
 
 

1 

CHAPTER 4 

Determining the mutational vulnerabilities of highly mutable viruses for rational design of vaccines 

Introduction 

We now turn our attention to the main antagonists that the immune system combats, infectious 
disease-causing pathogens. Infectious diseases have plagued humanity since antiquity. Although there 
was mention of miasmas and poisons as the cause of disease, the microbial origin of these diseases was 
unclear in ancient times. But, it was observed that if an individual was afflicted with small pox and 
recovered, she or he did not fall sick again. Thus, they served as caregivers. The origins of this 
observation were much debated, and two kinds of ideas (other than mystical ones) were popular at 
different times. Theories of expulsion argued that humans were born with some “noxious” substances 
(e.g., traces of menstrual blood), and small pox pustules were a way to expel these substances; one 
could not be afflicted by the disease again as the noxious substance had been successfully expelled. 
Theories of depletion were based on the idea that the disease could only thrive on a substrate in the 
human body, and once that substrate was depleted when an individual was sick, it was not possible for 
the disease to establish itself again. Beginning with the work of Koch, Pasteur, and many others, we now 
know unequivocally that microbial pathogens cause infectious diseases. 

Vaccination has saved more lives than any other medical procedure. Successful vaccination programs 
have resulted in the eradication of smallpox, which had caused devastation since antiquity, and the 
near-eradication of polio. Vaccines for numerous childhood diseases, such as measles, mumps, and 
rubella, are also a major contributor to the reduction of infant mortality. Modern vaccination roughly 
follows the paradigm pioneered by Jenner and Pasteur over two centuries ago. A dead or weakened 
form of the pathogen is injected into humans with the goal of inducing effective memory immune 
responses. In the twentieth century, additives (called adjuvants) were added to vaccines to help 
stimulate innate immune responses that are critical for the development of potent adaptive immune 
responses. The design of adjuvants remains largely an art and many new formulations fail to work. A 
detailed mechanistic understanding of innate immunity could help make the design of potent adjuvants 
systematic. 

Although the empirical paradigm of vaccine development has been a great success, the traditional 
approach has not led to successful protective vaccines against some pathogens. Prominent examples are 
HIV, HCV, tuberculosis, dengue and malaria, many of which are wreaking havoc around the world. We 
do not have a broadly effective vaccine against influenza either, and attempts to predict the right 
vaccine for the ensuing year often fail. Many of these pathogens share two features: 1] They present 
themselves in different guises, thus making them hard to target with specific immune memory 
responses. 2] They often degrade, or hide from, the immune system. 

HIV has characteristics which are extreme examples of both these features. It is a highly mutable virus 
with a rapid replication rate. Thus, it generates many mutant strains when it infects a person, and an 
enormous diversity of viral strains is circulating in the human population. Fig. 1 shows a comparison of 
the diversity of HIV strains in a single infected person, the diversity of circulating influenza strains in the 
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entire world in a particular year, and that of circulating HIV strains in a single region in Africa during the 
same time period [11]. The diversity of HIV strains dwarfs that of influenza. The high mutability allows 
HIV to evade natural or vaccine-induced immune responses [12]. For example, the infecting strain may 
not be the one for which vaccine-induced memory immune responses exist; even if it is targeted by the 
memory response, if the virus is not eliminated rapidly, the infecting strain can mutate in the host to 
escape from this response. Furthermore, HIV principally infects and eventually kills human T helper cells, 
thus degrading the adaptive immune system. This is the reason why Acquired Immunodeficiency 
Syndrome (AIDS), the disease associated with HIV infections, results in a severe state of 
immunodeficiency allowing many normally easy to control infections to afflict patients. Other pathogens 
listed above also mutate over time (e.g., influenza), and malaria uses a different strategy in that it 
expresses different interchangeable proteins on the surface. The bacterium that causes malaria hides 
from the immune system in red blood cells, and tuberculosis suppresses some innate immune functions. 
Vaccine design against HIV is particularly daunting because, unlike most other pathogens for which 
vaccines exist, HIV infection is not known to have ever been successfully completely cleared by natural 
human immune responses. So, there is no model of a human immune response that can eradicate HIV 
from an infected person which one can aim to mimic with a vaccine. The closest model is provided by a 
small cohort of patients (introduced in Chapter 3) called elite controllers, whose immune systems can 
control virus levels to low enough levels that they do not require antiretroviral therapy and do not 
progress to AIDS.  

Successful vaccination against pathogens that have evolved sophisticated strategies to evade human 
immune responses will benefit from the development of firm scientific principles that can guide rational, 
rather than empirical, vaccine design [10]. At least two important issues must be studied in this regard: 
1] What are the appropriate targets in the pathogen’s proteins on which to focus vaccine-induced 
immune responses such that the ability of the pathogen to evade such responses by mutation while 
simultaneously maintaining their viability/virulence is severely limited or eliminated? 2] How can such 
immune responses be induced by vaccination in humans with diverse genotypes? 

A convergence of several factors is beginning to enable us to take the first steps toward addressing 
these questions. Biologists and clinicians can collect enormous amounts of data on sequences of mutant 
strains of pathogens, and it is also becoming possible to interrogate the immune system on an 
unprecedented scale. Both the immune system and pathogens function and interact via collective 
processes that involve myriad individual components, thus making mechanistic interpretation of this 
data complex. Physicists, especially statistical physicists, have begun to play a role in translating this type 
of data to mechanistic knowledge that addresses the questions noted above. Engineers and 
clinician/scientists are beginning to design ways to more effectively deliver vaccines. The goal of 
developing mechanistic principles that can be harnessed for rational design of vaccines is bringing 
together physicists, biologists, clinicians, and engineers.  

In this chapter, we will focus primarily on defining the mutational vulnerabilities of highly mutable 
pathogens. For concreteness, we will consider primarily only one virus, HIV, but we will contrast it with 
influenza, which has a very different evolutionary history. Some topics covered in this chapter are also 
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pertinent to determining properties of protein families from sequence data, rather than protein 
structures.  

Brief description of the biology of HIV and definition of the key challenges 

HIV was transmitted to humans from monkeys, and is estimated to have been circulating in small 
populations of humans for nearly a century before it was recognized as a new disease causing pathogen 
[13]. The first well-documented cases were reported in 1981 in the United States. To date, HIV has 
infected over 70 million people, almost 40 million people have died from complications associated with 
AIDS, and 1 million people died in 2016. In developed nations, because of wide-spread availability of 
anti-retroviral (ARV) drugs, HIV infections can be controlled by regular doses of expensive medication, 
but it cannot be cured. In other parts of the world, ARVs are less easily available, and HIV continues to 
be a major problem, with sub-Saharan Africa being the epicenter of the disease. For example, although 
the mortality rates are beginning to stabilize, each day there are approximately 1000 new HIV infections 
in South Africa alone. A vaccine or cure is needed to eradicate HIV from the planet, but no successes 
have been reported after more than thirty years of work and very large amounts of money spent since it 
became known that the causative agent of AIDS was HIV. 

HIV is a retrovirus, which carries its genome in the form of RNA. The virus has a membrane through 
which proteins protrude. These “Envelope” proteins are called gp120 and gp41, which form a non-
covalently bonded trimer which constitutes the viral spike (Fig. 2). The density of spikes on the HIV 
membrane is roughly two orders of magnitude smaller than the spike density of most viruses, a point to 
which we will return in a later chapter. The outer membrane surrounds a capsid made up of structural 
proteins which encloses the virus’ genome and other key proteins important for viral function (Fig. 2). 
HIV is a retrovirus, so it carries its genome in the form of RNA. 

The life cycle of HIV is depicted schematically in Fig. 3. The trimeric spike binds to host cell surface 
proteins to initiate infection [14]. For example, the spike can bind to the CD4 co-receptor, which is 
expressed on the surface of T helper cells [15,16]. This binding event leads to a conformational change 
in gp120 and the dissociation of gp41, which then forms a six-helix bundle. The conformational change 
enables gp120 to bind to a second receptor on the surface of the host cell, which can be either CCR5 or 
CXCR3; viruses that bind to the former receptor are called CCR5-tropic and the ones that bind to the 
latter are called CXCR3-tropic.  These binding events and the free energy gained from gp41 forming an 
ordered state result in fusion of the virus’ membrane with that of the host cell membrane, resulting in 
release of the capsid in to the cytoplasm. The viral capsid is then uncoated, thus releasing its contents. A 
viral protein, Reverse Transcriptase, then converts the RNA strands in to DNA. This viral DNA, called a 
provirus, is transported in to the nucleus of the host cell along with a viral protein called integrase. 
Integrase inserts the viral DNA in to the genome of the host cell, thus infecting this cell for its lifetime. 
The HIV genes code for polyproteins (a number of concatenated proteins), and the transcriptional 
machinery of the host cell is hijacked to express these polyproteins. The polyproteins are chopped up by 
a HIV protein, called protease, resulting in individual proteins that mediate viral function. In a series of 
steps, the virus’ proteins are properly assembled at the membrane of the host cell [17]. A part of the 
host cell membrane becomes the membrane for a new virus particle as it buds out.  



 
 

4 

HIV has nine genes, with four of them, Gag, Pol, Nef, and ENV being the most important. Gag encodes 
structurally important proteins (such as the ones that make up the capsid), Pol codes for Reverse 
Transcriptase, Integrase, and Protease, ENV codes for gp120 and gp41, and Nef codes for proteins with 
many functions, including a role in downregulation of CD4 and MHC proteins. The MHC molecules in 
humans are called human leukocyte antigen (HLA) proteins.Downregulation of HLA proteins suppresses 
T cell responses and downregulation of CD4 helps the virus bud out of infected cells because that 
inhibits binding of the viral spike to the infected cell’s CD4 co-receptor.  

The two main sources of mutations in HIV’s lifecycle arise from reverse transcription not being a very 
high-fidelity process and mistakes in generating HIV proteins using the human transcriptional 
machinery. Mutations are introduced at an average rate of 3 × 10-5 per base pair per replication cycle 
[18]. HIV’s genome is about 104 base pairs in length, and so this implies that during every replication 
cycle the probability of evolving a mutant strain is 0.3. Moreover, Reverse Transcriptase can hop from 
one RNA molecule to the other, thus generating more options for creating diversity. When two different 
RNA genomes are available, this causes recombination of the genomes of two viral strains. Fitting 
parameters in ordinary differential equations describing viral dynamics to data from patients treated 
with drugs revealed that HIV replicates very rapidly [19], producing 1010 to 1011 virus particles per day in 
infected humans [20]. Many of the mutant strains that are produced do not grow as they cannot form 
infective virus particles. But, taken together, the high mutation and replication rates and HIV being a 
chronic infection are the main reasons underlying the extraordinary diversity of HIV strains circulating in 
the population and in individuals (Fig. 1).  

Upon successful infection, the virus replicates rapidly, and the viral load (that is, the number of viruses 
circulating in the host) increases (Fig. 4). As immune responses develop, the viral load decreases and 
then stabilizes at a steady state where the immune system and the virus are in balance [21]. During this 
phase, there is a dynamic “arms race” between the virus and the immune system. The immune system 
mounts a response directed at the prevailing viral strains which then mutate to evade these responses, 
then new responses develop, and the cycle continues. The steady state viral load varies widely across 
patients [22]. The host cell ultimately dies as new virus particles bud out, and the lifetime of an infected 
cell is estimated to be about 2 days. Thus, the number of CD4 T cells in an infected patient declines 
rapidly at first and then increases again to a steady value after the immune response develops to 
combat the virus (Fig. 4). The period when the viral load and CD4 T cell counts are stable is called the 
asymptomatic phase as no disease manifests. HIV belongs to a class of viruses called lentiviruses (slow 
viruses) which cause disease slowly. Without treatment the immune system ultimately loses the battle, 
viral load goes up, and CD4 T cells decrease to low numbers (Fig. 4). At this point, the individual’s 
immune system is severely compromised, and many opportunistic infections ensue leading ultimately to 
death. 

HIV’s ability to generate diverse mutant strains is a major reason why an effective vaccine does not exist 
[23]. In this book, we will focus on only two aspects of the challenge of creating an effective HIV vaccine. 
First, we will ask whether the data on thousands of sequences of HIV proteins derived from virus 
samples extracted from patients can be translated in to knowledge of the mutational vulnerabilities of 
the virus; i.e., which types of mutations is the virus unable to make to evade immune responses and still 
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remain viable. This topic will be the focus of this chapter. We will then study how the knowledge thus 
generated can be used to design the active component of a potentially effective vaccine that elicits 
potent T cell responses. In a later chapter, we will focus on how to generate potent antibody responses. 

Determining the mutational vulnerabilities of HIV 

 At first glance, determining the mutational vulnerabilities of a virus like HIV appears to be a simple 
problem given that today we can sequence large numbers of viruses derived from diverse patients. Just 
lining up these sequences and looking for residues where the most frequent amino acid appears 
relatively conserved (e.g., measured by low entropy of amino acid variation) should provide the answer. 
Focusing a vaccine-induced immune response to target such residues should be an effective strategy to 
control the virus. This is because to evade such an immune response, HIV would have to evolve a 
mutation at a residue where a particular amino acid is favored, and that should hurt viral function as a 
particular amino acid is relatively conserved at that residue for a reason. This strategy is blunted 
because, due to its high replication and mutation rates, HIV can evolve other mutations, so-called 
compensatory mutations, which can partially restore the fitness cost incurred by making the primary 
immune-evading mutation [29,30].  

Many properties of an evolving virus population can be described by assuming that each residue in the 
virus’ proteins evolves independently. But, if one wishes to determine the mutational vulnerabilities of a 
virus like HIV, one needs to define the collective mutational pathways that HIV uses to evade human 
immune responses in order to avoid targeting the involved residues with a vaccine-induced immune 
response. This is because, even though such compensatory interactions can be relatively rare, the high 
mutability and replication rate of HIV implies that they can be sampled, especially when immune 
responses provide a selection force that promotes the evolution of one of the involved mutations. One 
also needs to determine the combinations of mutations that the virus cannot make and remain viable, 
so as to target the involved residues with vaccine-induced immune responses and corner the virus 
between being killed by the immune responses and evolving unfit mutant strains that evade these 
responses. In short, one needs to determine the fitness landscape [31,32] of the virus – i.e., the ability of 
the virus to replicate and propagate infection as a function of its sequence, with explicit account for the 
coupled effects of mutations at different protein residues. Fig. 5 illustrates the concept of a fitness 
landscape using a 2-dimensional representation of sequence space, such as that of a virus comprised of 
one protein with two residues. Knowledge of the fitness landscape can be extremely useful for vaccine 
design. With a vaccine-induced immune response, one wishes to target residues such that combinations 
of mutations therein correspond to a fitness valley. One also wishes to block the mountain passes 
corresponding to the collective compensatory mutational pathways that HIV uses to go from one fitness 
hill to another adjacent one when the first one is under immune attack (Fig. 5).  

Vaccines have two key components – the immunogen and the vector. The immunogen is the component 
of the vaccine that encodes for, or is, the proteome of the pathogen against which one wishes to protect 
the host. The vector provides a way to deliver the immunogen in a way that results in a strong host 
immune response to the immunogen. The vector can be a harmless virus, in which case the virulent 
virus’ genome could be inserted into the carrier’s genome. There is also a lot of research being directed 
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these days toward engineering nanoparticles that can serve as vectors, with the immunogen being DNA, 
proteins, or peptides. 

Armed with the fitness landscape of a virus, one could design immunogens that could induce potent T 
cell responses. Such an immunogen would not be comprised of whole HIV proteomes as is traditional, 
but would contain only parts of it chosen according to three criteria: 1] Regions that are rife with 
compensatory pathways are minimized. 2] Regions wherein multiple mutations are especially 
deleterious are maximized. 3] Regions that can be presented by people with diverse MHC genes are 
maximized. Knowledge of the fitness landscape can also guide the choice of immunogens that could 
induce potent antibody responses, a topic that we will consider in a later chapter. 

The practical goal of enabling rational design of immunogens motivates efforts to obtain the fitness 
landscape of viruses. The method that we will consider below relies on translating sequence information 
alone in to knowledge of the fitness landscape; other approaches have attempted to infer information 
about HIV fitness by combining sequence information with data from in vitro experiments [33,34], an 
approach with its own set of potential complications [35]. We will also note that methods based on 
analyses of protein structures can add an underlying molecular perspective to the knowledge gained 
from obtaining viral fitness landscapes, but only when structures are available and when coupling 
between the effects of mutations do not originate from functions that involve multi-protein assembles 
of proteins or other functions that do not depend on structural stability alone. 

Simple calculations can reveal the importance of co-evolution of mutations in a protein or genome 

A simple way to determine whether mutations in different residues of a protein (or genome) coevolve is 
to analyze the covariance matrix defined by the probability of observing coupled pairs of mutations. For 
illustrative purposes, let us imagine that the amino acids at each residue come in two flavors, wild type 
or most frequent (denoted by 0) and mutant (denoted by 1). Such a representation is reasonable when 
the number of types of amino acids observed at each residue is small and there is a dominant mutant 
amino acid. In such a representation, if zi (equal to 0 or 1) represents the amino acid at residue, i, the 
covariance matrix, C, is defined as 

   (1) 

where angular brackets represent an average over all sequences and Vi and Vj are the variances of the 
distribution of mutations at residues i and j, respectively. Normalization of the elements of C using the 
variances allows comparison of the magnitudes of matrix elements corresponding to residues that could 
differ widely in the extent to which they are mutable. Other variants of the covariance matrix that are 
normalized differently have been described [], but here we focus on the simplest formulation. A 
covariance matrix can be diagonalized, and the corresponding eigenvectors are the simplest reflection of 
collective mutational pathways.  

But, the problem is complicated by at least two effects. First, even though we have many samples of the 
sequences of HIV proteins, it is a finite sample. Even if two variables are completely uncorrelated, given 

Cij =
〈ziz j 〉 − 〈zi 〉〈z j 〉

ViVj

,
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a finite sample, the covariance matrix will exhibit spurious correlations. Second, some correlations 
simply reflect the fact that all sequences belong to the same family, or phylogeny, of HIV viruses, and 
mutational fidelity leads to correlations between sequences. Such correlations are unrelated to those 
that arise from co-evolution of residues due to fitness constraints.  

Random matrix theory can be used to “clean” the correlation matrix of spurious noise and various 
approaches can be attempted to deconvolute the effects of phylogeny. Indeed, analyses of the 
“cleaned” correlation matrix have led to interesting insights into correlated mutations, and their 
biological significance, in various contexts. For example, Ranganathan and co-workers have analyzed 
some bacterial protein families in this manner and described distinct sets of co-evolving residues within 
such proteins, as determined from analysis of the eigenvectors. They called each set of coevolving 
residues a “sector”, with each sector being important for a distinct function of the protein. Similar 
analyses have also shed light on co-evolution of mutations in the HIV polyprotein, Gag, and HCV 
proteins. For example, it was shown that multiple simultaneous mutations in certain sets of residues in a 
protein called p24 (in Gag) evolved rarely because they are involved in protein-protein interfaces that 
are critical for the assembly of the structure of the viral capsid. Thus, viral strains with mutations at 
multiple such residues were likely to destabilize capsid assembly, and make the virus unviable. 
Consistent with this interpretation, it was shown that T cell responses in elite controllers of HIV targeted 
such coupled sets of residues. 

The type of analysis outlined above can be helpful in identifying some collective mutational correlations. 
However, it does not provide a quantitative metric that differentiates relative fitness costs incurred by 
the virus upon making one set of mutations versus another. The absence of a metric of relative fitness 
also does not allow for the calculation of in-host evolutionary dynamics in response to different immune 
pressures. Such calculations can allow one to determine which types of immune responses will either 
extinguish the virus population or be able to keep the virus cornered for long times before mutational 
escape can occur. These are the types of immune responses that one would wish to induce by 
vaccination. The inability to make predictions like the ones noted above also make it difficult to test 
predictions against in vitro and clinical data in order to establish the veracity of the models inferred from 
sequence data. Another important point is that the methods noted above obtain the structure of 
correlated mutations by analyzing the population of prevalent or circulating viral strains. But, these virus 
samples are derived from patients in each of whom a host-pathogen battle had ensued, thus likely 
forcing certain mutations to evolve that evade the immune response. The resulting prevalent viral 
strains are not necessarily the intrinsically fittest strains, but those that are fittest in this individual, 
given her/his immune response. We seek information about intrinsic fitness because we want to learn 
how to target the virus with immune responses so that escape mutations would have a very low intrinsic 
ability to replicate and propagate infection (i.e., low intrinsic fitness). The methods noted above do not 
easily allow for a principled way to analyze and deconvolute the effects of human immune responses to 
understand how prevalence and fitness of strains are related. For these reasons, while insightful, these 
methods are insufficient for obtaining the fitness landscape that we seek.  

The next section describes methods that can address the pertinent issues for determining the fitness 
landscapes of HIV proteins. We will also discuss why these methods would require significant 
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modifications to obtain the fitness landscapes of viruses like influenza, which have a very different 
evolutionary history. 

Inference of prevalence and fitness landscapes of HIV proteins 

Inference of the fitness landscape from sequence data can only be done in a statistically meaningful way 
if a sufficient number of sequences are available. At the time of writing, the number of sequences of 
whole genomes of HIV strains circulating in the population is insufficient for this purpose. A sufficient 
number of sequences of the HIV polyproteins are available. Therefore, we will focus on the fitness 
landscapes of HIV polyproteins. The landscape of the virus thus obtained ignores co-evolution of 
proteins encoded by different genes. From a biological standpoint, this limitation could be a problem. 
Fortunately, intergenic epistasis (coupling between mutations) seems to be rare for HIV, but it is not 
absent. From a methodological standpoint, this is a detail, since the same methods could be applied to 
whole genomes when a sufficient number become available (although the numerical challenges would 
increase).  

One can begin by seeking to construct a model for the prevalence landscape, or the probability P(z) of 
observing a sequence, z, of an HIV polyprotein in the circulating virus population [46]. The sequence 
data contains this information. It also has information on the probability of observing single mutations 
at every residue of a protein, double mutations at every pair of residues, triple mutations at every triplet 
of residues, etc. Any mathematical model for P(z) that can recapitulate these mutational correlation 
functions will accurately describe the prevalence landscape. One way to approach this inference 
problem is to ask: what is the “least biased” model for P(z) that recovers the one- and two-point 
mutational correlations observed in the available sequence data.  

As described in the Appendix to this chapter, exploiting the connection between statistical mechanics 
and information theory, one may interpret “least biased” to mean the probability distribution P(z) which 
has the maximum entropy subject to the constraints on preserving the observed mutational correlations 
[47]. A similar approach has been used to infer contacts in protein structures [48,49], correlations 
between the firing of neurons [50], etc. Related methods have also been employed to study structural 
properties of HIV protease [51] and inter-protein interactions [52]. Indeed, the development and use of 
such inference methods is a very active area of research. 

For most HIV proteins, a Potts model is appropriate for representing the amino acids at each residue 
(see details later). This is because a number of amino acids are observed at each residue in the 
circulating viral strains. For ease of illustration, let us use an Ising representation (amino acids at a 
residue are either the most frequent or a mutant) to simplify the notation below. The generalization to 
Potts models is straightforward. With this simplified notation, the quantity we wish to maximize is 

−	∑ 𝑃	(𝑧) log 𝑃	(𝑧) − 	𝛼	(∑ 𝑃	(𝑧) − 1- ) − 	∑ ℎ/	(𝑝/ − ∑ 𝑧/	𝑃	(𝑧)- ) −	∑ 𝐽/2	3𝑝/2 −	∑ 𝑧/	𝑧2𝑃	(𝑧)- 4/52/-   
(2)    
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where the constraints are enforced through the Lagrange multipliers α, hi, and Jij. Here pi and pij 
represent the observed one- and two-point mutational correlations, respectively. Maximizing this 
functional with respect to P (z) yields: 

   (3) 

where the fields hi and couplings Jij are those that constrain the one- and two-point correlation functions 
to be the observed ones. The partition function, Z, ensures that the probability distribution is properly 
normalized. The couplings Jij can have both positive and negative signs and so there are interesting 
analogies between the form of the Hamiltonian in Eq. 3 and the Hopfield model of neural networks [53], 
which we will not discuss [54]. Note that positive and negative values of Jij correspond to compensatory 
and antagonistic effects of double mutations at the i-j pair of residues, respectively.   

Once we choose the form of P (z) as in Eq. 3, the log-likelihood of the observed sequence data is 
maximized when the fields and couplings are chosen to be those that predict the observed one and two-
point mutational correlations. The likelihood of the observed data is given by the product of the 
probabilities predicted by the model for observing each sequence in the data. The log of this likelihood 
divided by the number of sequences, B is thus: 

   (4) 

where z(k) represents the kth sequence. Maximizing 𝑙 with respect to the parameters (the fields and the 
couplings) yields 

   (5) 

where pi = Σk zi
(k)/B, pij = Σk zi

(k) zj
(k)/B; the sums in the second terms on the right hand side of each part of 

Eq. 5 are over all sequences, z, and so these terms represent model predictions for the one and two-
point mutation correlations, respectively. That is, the fields and couplings that maximize the likelihood 
of the data are also the ones that recapitulate the observed one- and two-point mutational correlation 
functions. 

Inferring the fields and couplings that maximize the likelihood of the data (Eq. 4), given that we know 
the empirically observed one and two-point mutational correlation functions, is referred to as the 
inverse Ising (or Potts) problem. The problem is challenging to approach directly through traditional 
optimization methods because the likelihood depends on the partition function. In principle, as there 
are 20 possible amino acids (or states) for each residue, the partition function for a Potts model for a 
protein of length, N, involves summing 20N terms. So, the computational cost of evaluating the partition 
function grows exponentially with the length of the protein, and this quantity has to be evaluated many 
times, once during each iteration of the algorithm that searches for the parameters in Eq. 4 that 

P(z) = e
−H (z )

Z
, H (z) = − hi

i
∑ zi − Jij

i< j
∑ ziz j ,

 
ℓ = 1

B
log P

k=1

B

∏ (z(k ) )⎛
⎝⎜

⎞
⎠⎟
= − logZ + 1

B
hi

i
∑ zi

(k ) + Jij
i< j
∑ zi

(k )z j
(k )⎛

⎝⎜
⎞

⎠⎟k=1

B

∑ ,

 

∂ℓ
∂hi

= pi − zi
z
∑ e−H (z )

Z
= 0, ∂ℓ

∂Jij
= pij − zi

z
∑ z j

e−H (z )

Z
= 0,
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maximize 𝑙. The conceptually most straightforward way to do this is Boltzmann learning. You start with 
an initial guess for {hi} and {Jij}, and generate a large ensemble of sequences according to p (z) ~ e-H, 
using Monte-Carlo sampling. Briefly, this is done as follows. Attempt to mutate every residue in a given 
sequence that has been generated with a certain probability (e.g., the mutation rate of HIV). Generate a 
random number on a computer that is drawn from a uniform distribution and lies between zero and 
one. The sequence is accepted as part of the sequence ensemble if the random number is less than e-H 
for this sequence, otherwise it is rejected, and another mutational move is tried. Such a procedure 
ultimately generates a set of sequences according to the prevalence probabilities predicted by the 
model. Compute {pi} and {pij} from this ensemble of sequences and compare the values to the 
empirically observed values in the sequence data. Use any standard gradient descent method to 
generate a new estimate for {hi} and {Jij}, and repeat until convergence. Such a method is 
computationally prohibitive for all but the smallest systems because of the burden of carrying out the 
Monte-Carlo sampling a large number of times (as it is analogous to computing the partition function 
many times). For example, with just an Ising representation for p24 sequences (which is 231 amino acids 
long), such an algorithm required of the order of 108 steps in each MC sampling step to obtain 
converged averages for {pi} and {pij}, and 20,000 iterations for parameter convergence. 

A number of methods have been developed to address this challenge. The reader is encouraged to 
peruse descriptions of algorithms like iterative scaling, pseudo-likelihood, perturbation expansions, 
mean-field (or Gaussian) models, minimum probability flow, etc. Here, we will discuss only one 
algorithm that has proven to be useful for most HIV proteins.  

The Selective Cluster Expansion (SCE) Method 

This method is rooted in the rich history of cluster expansions in statistical physics, and takes advantage 
of the fact that, for most proteins, the matrix of couplings, {Jij}, is sparse.   

Notice that Eq. 4 can be expressed in the following ways: 

𝐵𝑙 =	−𝐵 log 𝑍 −	∑ 𝐻	[𝑧<====⃗?
<@A ]     (6) 

The first term on the right-hand side can be interpreted as a Helmholtz Free energy, and the second as 
the negative of the energy. So, −𝐵𝑙 can be viewed as an entropy, S. Now, 

−𝑙 = 	 C
?
= 𝑆∗ = log 𝑍 −	∑ ℎ/𝑝/ −	∑ 𝐽/2𝑝/2/2/    (7) 

The intensive entropy, S*, is referred to as the intensive cross-entropy between the data and the 
inferred model. Maximizing the likelihood of the data is tantamount to minimizing this cross entropy. 

As we will see shortly, the SCE method solves for the fields and couplings by breaking the problem up 
into one where one solves for the fields and couplings in disconnected clusters of residues (i.e., with 
many values of Jij equal to zero). The size of these clusters is progressively grown, starting from 
independent residues, by adding connections between clusters until the inferred model recapitulates 
the observed one and two-point mutational correlations. But, before we describe the SCE algorithm, let 
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us note how in maximizing the likelihood of the data, or minimizing the cross entropy, we must account 
for the fact that the data itself is usually under sampled because only a finite number of sequences are 
available. 

Suppose that the true probabilities of observing the one and two-point mutational correlations are 𝑝/F 
and 𝑝/2F , respectively. If the data consists of B sequences, the probability of observing n mutations at a 
particular residue is given by the binomial distribution, 

3?G4	3𝑝/
F4
G
	31 −	𝑝/F4

?HG
  (8) 

The variance of this binomial distribution, < (𝛿𝑛)L >, is 𝐵	𝑝/F	(1 −	𝑝/F), and so the error in the data for 
pi is 

𝛿𝑝/ = 	O
5(PG)QR

?Q
= 	OST

U	(AH	ST
U)

?
	~	O

ST	(AH	ST)
?

     (9) 

In replacing 𝑝/F with 𝑝/ in the last approximate equality above, we have ignored higher order terms in 

1/B. Now, similarly, 𝛿𝑝/2 = 	~	O
STW	(AH	STW)

?
 .  

For sufficiently small values of B, the error in the data can be significant. In particular, if Bpi or Bpij << 1, 
then the corresponding single or double mutant would not be likely to be observed in the data. This 
would result in inferring that the magnitude of the corresponding field or coupling is infinite (so, the 
weight of a sequence with a mutation at i, or the double mutant at the i,j pair, is zero). This inference 
would be incorrect, and purely a manifestation of under sampling of sequences. For sequences of viral 
proteins, such as the cases of interest in this chapter, this problem is manifested mostly in estimates of 
the couplings. This is because, statistically, the errors are greater for higher order mutational 
correlations (e.g., for uncorrelated mutations, pij = pipj, and Bpij can be much less than 1 for values of B 
for which Bpi is not less than unity). 

A principled way to ameliorate the finite sampling problem is obtained by assuming some prior 
knowledge of the distribution of the couplings. Using Bayes theorem in statistics, we can write: 
 

𝑃X	Y{𝑧} ∥ ]ℎ=⃗ , 𝑱_` ∗ 	𝑃Sa/ba	Yℎ=⃗ , 𝑱` = PY]ℎ=⃗ , 𝑱_ ∥ {𝑧}` ∗ 𝑃	[{𝑧}] (10a) 
 
or equivalently,  
 

PY]ℎ=⃗ , 𝑱_ ∥ {𝑧}` = 	
de	Y{-⃗}∥]f==⃗ ,𝑱_`∗	dghTih	Yf==⃗ ,𝑱`

d	[{-⃗}]
      (10b) 

 

Here, 𝑃X	Y{𝑧} ∥ ]ℎ=⃗ , 𝑱_` is the likelihood of the sequence data, given the fields and couplings, 𝑃Sa/ba	Yℎ=⃗ , 𝑱` 
is the prior estimate for how the fields and couplings are likely to be distributed, 𝑃	[{𝑧}] is the 
probability of observing the sequence data out of all possible Potts models (appears only as a 
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normalization), and PY]ℎ=⃗ , 𝑱_ ∥ {𝑧}` is the likelihood of the fields and couplings having specific values 
given the data.  

  
In we assume that the finite size of the data principally impacts the estimated two-point mutation 
correlations (see earlier), and in the absence of more precise knowledge, it is reasonable to assume that 
the couplings, Jij, are distributed as a Gaussian. Therefore, 

𝑃Sa/ba	Yℎ=⃗ , 𝑱` ≈ 	𝑃Sa/ba	[	𝑱] =
A

(LklQ)m
n(nmo)

Q
exp s−	

A
LlQ

	∑ 𝐽/2Lt
/,2 u  (11) 

N is the number of residues in the protein. Now noting that, by definition, the log likelihood of the data, 
given the fields and couplings, is 𝐵𝑙 = 	−𝐵𝑆∗, the numerator on the right-hand side of Eq. 10 b can be 
written as: 

A

(LklQ)m
n(nmo)

Q
exp s−𝐵 v𝑆∗ +

x
L∑ 𝐽/2Lt

/,2 y	u   (12) 

with 𝛾 = 	 A
?lQ

.  Given that 𝑃	[{𝑧}] is just a normalization factor, Eq. 12 is PY]ℎ=⃗ , 𝑱_ ∥ {𝑧}` within such a 

normalization. We would like the fields and couplings to be those that maximize PY]ℎ=⃗ , 𝑱_ ∥ {𝑧}`. This is 

tantamount to minimizing 𝑆∗ + x
L∑ 𝐽/2Lt

/,2 . That is, to obtain the best estimate for the fields and couplings, 

given that in a Bayesian sense we apriori expect the couplings to be distributed as a Gaussian centered 
around zero, we should minimize S* (or maximize the likelihood of the data), with a term added to it. 
The expression, 𝑆∗ + x

L∑ 𝐽/2Lt
/,2 , is referred to as the regularized cross entropy, and this quantity is 

minimized in the SCA method. The regularization term effectively penalizes large values of Jij during the 
optimization procedure, thus partially mitigating the effects of under sampling in the sequence data. 
Although some ways have been proposed to choose the value of 𝜎L, the choice really is arbitrary. Often, 
it is chosen such that the probabilities of observing higher order mutations in the sequence data are also 
predicted reasonably by the inferred quadratic model.  
 
Eq. 12 also allows us to estimate the errors in the fields and couplings due to finite sampling. Without 
the regularization term, the probability of inferring particular values of the fields and couplings is 
proportional to exp [-BS*] as per Eq. 12 (S* depends on {hi} and {Jij} as per Eq. 7). If B is very large, this 
probability distribution will be narrowly distributed around the true values of the fields and couplings. 
For finite B, the deviations in the fields and couplings from the true values will asymptotically be 

distributed as a Gaussian with a variance proportional to 1/B, and thus the deviations will scale as A
√?

. 

As we plan to obtain the fields and couplings from the data by minimizing the regularized cross entropy 
(Eq. 12), it is appropriate to ask if this quantity has a unique minimum. It is easy to show that the 
regularized cross entropy is convex (i.e., the Hessian of the regularized cross entropy is a positive 
definite matrix), and so it has a unique minimum. The terms in the Hessian matrix of S* can be obtained 
by using Eqs 7. They have the following form: 

}QC∗

}fTfW
= 	 〈𝑧/𝑧2〉 − 	〈𝑧/〉〈𝑧2〉   (13a) 
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}QC∗

}fT���
= 	 〈𝑧/𝑧<𝑧�〉 − 	〈𝑧/〉〈𝑧<𝑧�〉	  (13b) 

}QC∗

}�TW���
= 	 〈𝑧/𝑧2𝑧<𝑧�〉 −	〈𝑧/𝑧2〉〈𝑧<𝑧�〉	 (13c) 

That is, the Hessian of the cross entropy is the covariance matrix of mutational correlations. A 
covariance matrix is positive definite, which can be most readily illustrated by considering a zero 
centered two-point covariance matrix, C, with individual terms, <zizj>. For the matrix, C, to be positive 

definite, we require that the scalar, 𝑦�	=====⃗ 	𝑪		�⃗�, for any vector, �⃗�, be positive. This scalar quantity can be re-
written as follows to show that it is positive: 

𝑦�	=====⃗ 	𝑪		�⃗� = 	∑ 𝑦/	𝐶/<𝑦< = 	 〈∑ 𝑦/	𝑧/𝑧<𝑦</,< 〉 = 	 〈(∑ 𝑦/𝑧// )L〉 > 0/,<   (14) 

The term added to S* in Eq. 12 in order to regularize it has a Hessian that equals x
L
𝑰, where I is the 

identity matrix. So, the regularized S* has a positive definite Hessian, and so has a unique minimum.  

The SCE method is a particular algorithm that obtains the fields and couplings by minimizing the 
regularized cross-entropy. The method reduces the computational burden by taking advantage of the 
fact that for many biological applications the J matrix is relatively sparse. The fields and couplings are 
inferred for disjoint connected clusters of increasing size using the following recursive algorithm.  

The entropy, S, of the system can be written as follows: 

𝑆 =	∑ Δ𝑆��    (15) 

where Δ𝑆� is the change in entropy by including connected clusters of size, Γ, compared to the entropy 
obtained by considering smaller size clusters; i.e.,  

Δ𝑆� =	 𝑆� −	∑ Δ𝑆����∈	�  (16) 

where Γ�represents the smaller clusters. We illustrate Eq. 16 explicitly, by writing down formulas for 
clusters of increasing size below: 

∆𝑆/ = 	 𝑆/	 

∆𝑆/2 = 	 𝑆/2 −	𝑆/ − 	𝑆2  

∆𝑆/2< = 	 𝑆/2< −	∆𝑆/2 −	∆𝑆/< −	∆𝑆2< −	∆𝑆/ −	∆𝑆2 −	∆𝑆<  (17) 

The recursive SCE algorithm proceeds via the following steps: 

1] Start with single residues. In this case, we can directly minimize the cross entropy to obtain an 
estimate for the fields as the regularization term affects only the values of the couplings. Minimizing the 
cross entropy (Eq. 7) leads to the following expression: 

𝑝/ = 	
} ����
}fT

= 	
∑ �T ���[∑ fT�TT ]{�=⃗ }

�
= 	

∑ �T ���[fT�T]�T��,o

∑ ���[fT�T]�T��,o
= 	 ���[fT]

A�	���[fT]
	  (18) 
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Therefore,  

ℎ/ = log �
ST

AH	ST
�       (19) 

The entropy, Si, for each spin is just −	𝑝/ log 𝑝/ − (1 −	𝑝/) log 	(1 −	𝑝/). 

2] Now construct clusters of all pairs of residues, and minimize the cross entropy including the 
regularization term (𝑆∗ + x

L∑ 𝐽/2Lt
/,2 ) to obtain new estimates for the fields and couplings. The 

minimization can be carried out using various methods, such as gradient descent, etc. The starting guess 
for the fields is the one obtained in step 1, and an independent pair approximation can be made to 
estimate the initial values of the couplings. Upon convergence of the minimization algorithm, compute 

the entropy, - (∑ 𝑝	(𝑧)===⃗ ln 	𝑝	(𝑧)===⃗{-⃗} ) of the two-residue clusters by sampling configurations of each cluster 
using the inferred values of the fields and couplings. Then, using Eq. 16 (or 17) compute the change in 
entropy between the two-residue clusters and that for single residues (obtained in step 1). If the 
entropy change, ∆𝑆/2, is larger than a threshold value (T), then the particular coupling constant and two-
residue cluster is kept. Otherwise, the connection is not included. 

3] Now construct three residue clusters starting from the connected pairs, and minimize the cross 
entropy including the regularization term (𝑆∗ + x

L∑ 𝐽/2Lt
/,2 ) to obtain new estimates for the fields and 

couplings. The starting guess for the fields and couplings is the one obtained in step 2, and additional 
ones for the new couplings. Upon convergence of the minimization algorithm, compute the entropy of 
the three-residue clusters by using the inferred values of the fields and couplings to sample 

configurations of each cluster, and using the fact that the entropy is (−	∑ 𝑝	(𝑧)===⃗ ln 	𝑝	(𝑧)===⃗{-⃗} ). Then, using 
Eq. 16 (or 17) compute the change in entropy upon considering three-residue clusters compared to the 
connected residue pairs obtained in step 2. A particular three-residue cluster and corresponding 
couplings are kept only if the entropy change, ∆𝑆/2< , is larger than a threshold value (T).  

4] Keep growing cluster sizes in this way. For a given value of T, the procedure will end with a disjoint set 
of clusters that cannot be grown further without an entropy change less than T. Using the fields and 
couplings thus inferred sample configurations using Monte-Carlo simulations to obtain the one and two-
point mutational probabilities. If these probabilities compare well with the observed values estimated 
from the data, then the procedure has converged. If not, repeat steps 1 – 4 with a lower value of T. 

Fig. 6 shows a comparison of the mutational correlation functions calculated by sampling sequence 
configurations according to Eq. 3 using the converged fields and couplings inferred by the SCE algorithm 
and the sequence data for the p24 protein contained in the Gag polyprotein of HIV. As illustrated 
therein for the ENV polyprotein, the inferred model can also capture the probabilities of observing 
higher order mutations, and this is true for other HIV polyproteins.  

Here we have provided only a sketch of the SCE algorithm. Many details of the algorithms that are used 
can be found in reviews co-authored by Cocco and Monason.  

Obtaining the sequence data 
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We downloaded the amino acid multiple sequence alignment (MSA) of HIV-1 Clade B gp160 sequences 
from the Los Alamos National Laboratory (LANL) HIV sequence database (www.hiv.lanl.gov; accessed 
14th May, 2016). To control sequence quality, we excluded sequences (i) labeled by LANL as 
‘problematic’, (ii) with ≥ 2% gaps at non hyper-variable residues  

(https://www.hiv.lanl.gov/content/sequence/VAR_REG_CHAR/variable_region_characterization_explan
ation.html), (iii) with > 10 consecutive insertions at residues where there is an amino acid at every other 
sequence or (iv) which are outliers as determined by principal component analysis (PCA) (as described in 
(1)). We then removed sequences labeled or predicted to be CXCR4-tropic, where the prediction was 
performed using (2). A total of 20043 sequences remained after excluding the above sequences, with 
these sequences belonging to a total of 1918 patients.  

To control residue quality, we excluded residues which are (i) 100% conserved, (ii) contain >90% gaps or 
are ambiguous, or (iii) are in the hyper-variable regions due to the poor quality of the alignment. We 
then included eight additional  

“artificial” residues whose states reflect the number of residues and N-linked glycans in the four hyper-
variable regions we have excluded. 

Constructing Potts models 

All of the analyses shown above is easily generalized to Potts models, but the numerical cost grows 
quickly with the number of amino acids that are explicitly considered at each residue of the protein. 
Therefore, some simplifications are made. The amino acids that arise more frequently at each residue 
are represented explicitly and the less frequent amino acids are grouped in to a single pseudo amino 
acid. The number of amino acids represented explicitly at each residue is different. 

Let the probability of observing amino acid, a, at residue, i, be denoted by pi (a). In a representation 
where the least observed amino acids are lumped in to a single pseudo amino acid, we rewrite the 
probabilities of occurrence of amino acids (pi’ (a)) as follows: 

𝑝/�	(𝑎) = 	 𝑝/	(𝑎)						𝑖𝑓	𝑎 < 	𝑘/ + 1 

										= 	𝑝/�												𝑖𝑓	𝑎 = 	 𝑘/ + 1 

																																																		= 0														𝑖𝑓	𝑎 > 	𝑘/ + 1                (20) 

Here the amino acids labeled 1 through ki are the ki most frequently observed amino acids that are 
represented explicitly, and the others are lumped into one pseudo amino acid which appears with a 
frequency equal to 

𝑝/� = 	∑ 𝑝/	(𝑎)
¤T
¥@	<T�A    (21) 

where qi is the number of amino acids observed at residue, i. 

Commented [MOU1]: Has to be generalized 
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The choice of ki determines the fraction of the entropy associated with amino acid variation at residue, i, 
that is captured in spite of lumping the least frequent amino acids in to a single pseudo amino acid. The 
total entropy at residue, i, Si  is: 

𝑆/ = 	−	∑ 𝑝/	(𝑎) log 𝑝/	(𝑎)
¤T
¥@A   

The entropy upon lumping the least frequent amino acids in to a single pseudo amino acid according to 
Eq. 20 is: 

𝑆/	(𝑘/) = 	−	∑ 𝑝/	(𝑎) log 𝑝/	(𝑎) −	
<T
¥@A 𝑝/� log 𝑝/�   (22) 

𝑆/	(𝑘/) = 	𝜑	𝑆/																								(23) 

where f is the fraction of entropy that is captured by the coarse-grained representation described by Eq. 
20.  

There are two principal factors that determine the choice of ki, and hence, f: 1] we wish to capture as 
much of the observed entropy as possible, which is favored by large values of ki. 2] we wish to minimize 
the computational cost which grows with ki. A way to balance these two factors is obtained by noting 
that the data for the probability of observing the least frequently observed amino acids is statistically 
more noisy because of under sampling than that for the more frequently observed amino acids. This can 

be seen easily by computing the relative error due to under sampling, 5(PST)
QR

ST
Q , using Eq. 9. A principled 

way to determine ki is to make the error introduced by lumping the less frequent amino acids in to a 
single pseudo amino acid comparable to the variance in the observed sequence data. The ratio of the 
error to the variance, given a choice of f (or ki), is denoted as bI (f) in the formula below: 

𝛽/	(𝜑) = 	
∑ [ST(¥)H	ST

�	(¥)]Q
ªT
«�o

∑ o
¬	[ST	(¥)	(AH	ST	(¥)]

ªT
«�o

    (24) 

We can now define a value of b that is averaged over all residues of the protein as follows: 

𝛽	(𝜑) 	= 	 AX 	∑ 𝛽/	(𝜑)X
/@A   (25) 

The value of f can now be chosen such that 𝛽	(𝜑) is roughly unity. Empirically, it is found that, for 
example, for the large HIV polyprotein, ENV, the resultant value of f is 0.95. Typically, values of f above 
0.9 seem to be sufficient for accurate estimates (as measured by tests against experimental data). 

Connection between prevalence and fitness of HIV strains 

The model that we infer by following the procedure above describes the prevalence of circulating strains 
of HIV. One could argue that the more prevalent strains are also the ones that are intrinsically more fit, 
but this relationship can be complicated by several factors. The sequences of strains that are used to 
infer the prevalence model are derived from patients whose immune systems have battled the virus. 
Mutations that make the virus intrinsically less fit may allow the virus to evade the immune response, 
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thus making a strain bearing these mutations effectively more fit and prevalent in a particular host. How 
does the host-pathogen riposte affect the relationship between the prevalence and intrinsic viral 
fitness?  

Computer simulations aimed to mimic the way in which the virus samples were collected, with explicit 
consideration of host immunity, may be able to shed some light. One realization of such an effort is 
described in [68]. As schematically depicted in Fig. 7, an “in silico” person is infected with N copies of 
HIV, and a host-pathogen battle ensues (described below). At a randomly chosen time, a randomly 
chosen virus strain from this in silico person is transmitted to another host, and the infection begins 
anew with N copies of the transmitted strain. HIV is a chronic infection and its proteins are extensively 
subjected to T cell responses that target peptides bound to MHC molecules. Because the newly infected 
person is likely to have a different MHC genotype and antibody responses also vary across hosts, in the 
calculations the virus evolves in response to different immune responses in each in silico person (see 
below). At a randomly chosen time, a virus sample from this person infects another new host, and this 
process is continued. At separate randomly chosen times, a virus sample from the current virus 
population within each host is recorded, and these samples can be thought to represent a sequence 
database that is later used to infer the prevalence model. 

Within each person, the fitness of the virus is modulated by the immune response. Let us assume that 
the intrinsic fitness is described by the inferred prevalence landscape. As will become clear below, the 
results of the computer simulations will inform us about the veracity of this assumption. The immune 
response, which acts on particular residues of viral proteins that are part of the peptides bound to MHC 
or antibody epitopes, can be modeled as a set of external fields that act at a few points to promote 
mutations. Again, for simplicity, in an Ising representation, the effective Hamiltonian (or in-host fitness) 
can be written as 

𝐻®® =	−	¯ℎ/𝑧/ − 	¯𝐽/2𝑧/𝑧2 +	¯ 𝑏/�	𝑧/�
<

/�@A

						(26)
/52

t

/@A

 

The fields, bi
’, act only at residues being targeted by T cells and antibodies in the particular person under 

consideration. For all other sites bi
’ is zero. The superscript prime denotes the set of targeted sites and 

note that they may not be contiguous. There are short-range correlations between the locations at 
which these fields act (within peptides or antibody epitopes), which are ignored for simplicity. The 
number and location of the residues at which immune pressure is applied in each individual comes from 
a statistical distribution, whose choice can be guided by clinical data. Human immune responses, 
especially those due to T cells, are extraordinarily diverse [69] [4]. Thus, the same residues are not 
consistently targeted among different hosts. For example, of the 363 residues in the immunogenic 
structural proteins, p17 and p24, only 46 are targeted by T cells in more than 10% of humans, none by 
more than 23%, and 146 residues are not targeted at all [40]. Thus, as a rough approximation, the 
targeted sites in a HIV protein within each host can be selected from a uniform distribution across the 
entire protein, mimicking the high diversity of targeted epitopes by humans with diverse genotypes.  
The number of targeted residues, k, may be chosen randomly between 0 and nmax (=6 in the calculations 
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due to Shekhar et al). At each targeted site, a reasonable way to set the value of the field bsi is to choose 
it from a Gaussian distribution, whose mean and variance are the same as for the inferred hi.  Since we 
have assumed that the latter correspond to the intrinsic fitness, this choice of the values of bsi ensures 
that some immune responses will promote mutations.  

Viral dynamics within each host can be simulated using a model similar in spirit to Wright-Fisher models 
in evolutionary biology (Fig. 8). Each residue in proteins in each viral strain in an individual can mutate 
with a certain probability per site (that of HIV). The new viral strains produce progeny (are positively 
selected) with a probability equal to  

 𝑃�²a³	(𝑧) = 	
m	´µ¶¶

A�	m	´µ¶¶
      (27) 

In Eq. 27, the fitness of the strain, z, is compared to the consensus sequence, which is assumed to have 
the best fitness (equal to 1). The fitness of the strain under consideration can also be compared to the 
average fitness of all the strains present at that time, <exp (-H (z))>, and the qualitative results turn out 
to be the same. After this selection step, the number of viruses is then scaled back to a total of N strains 
that reflect the same probability of occurrence of each strain that survived selection, and the calculation 
is repeated. The assumption of constant population size may be appropriate as it is expected that most 
samples of viruses were drawn from patients who were in the chronic stage of infection when viral load 
does not fluctuate much. Moreover, several studies have shown that, for large enough population sizes, 
Wright-Fisher like dynamics asymptotically approach results of calculations that do not impose constant 
population size. Shekhar et al. studied population sizes that ranged from 2×103 – 5×105. 

Upon carrying out simulations following the method described above one obtains a set of sequences 
derived from the in silico patients that reflects host-pathogen riposte. One can now obtain the one and 
two-point mutational correlations from this set of sequences and compare them to those corresponding 
to the sequences derived from the real patients (i.e., the ones used to infer the prevalence landscape). If 
these sets of mutational correlations are the same, then the prevalence landscape is the same as the 
fitness landscape. This is because the assumed intrinsic fitness landscape is the prevalence landscape 
which, by construction, fits the mutational correlation functions observed in the sequences derived from 
actual patients. So, if the sequences obtained from the in silico patients (post host-pathogen riposte) 
exhibit the same mutational correlations, the prevalence landscape inferred from these sequences 
would be statistically the same as the assumed intrinsic fitness landscape. Shekhar et al carried out such 
calculations for the p17 HIV protein, and found that the two sets of mutational correlations are not the 
same (Fig. 9). So, the prevalence landscape is not the fitness landscape.  

However, the two sets of mutational correlations are statistically monotonically correlated. If the 
Hamiltonian in Eq. 3 was of the ferromagnetic form, Griffiths theorem in statistical physics [70] would 
lead to the conclusion that the fields and coupling constants are also monotonically correlated. Thus, 
the fitness and prevalence landscapes would be related by a simple shift. This is sufficient for vaccine 
design as we only need to know the relative fitness of strains, not the absolute fitnesses, to determine 
which epitopes would be more efficacious to target with an immune response. However, the 

Commented [MOU2]: Is this consistent with estimated 
effective population sizes 
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Hamiltonian is not of this form, as the couplings, Jij have both signs, and for such a Hamiltonian, an 
analog of Griffiths theorem does not exist. 

The numerical simulations, although useful, seem to have led us to a dead end with respect to 
determining the relationship between the prevalence and fitness landscapes. Below, we discuss an 
approximate analysis which, informed by the simulation results, sheds more light. 

Eigen considered the evolution of a swarm of species (e.g., virus strains) in the limit of an infinite total 
virus population. The resulting deterministic equation for the temporal variation of the frequency of 
each strain is given by [71]: 

·¸¹
·F

= 	 𝑓º	𝑥º −	∑ 𝑊½º	𝑥º + ∑ 𝑊º½	𝑥½ −	𝑥º 	∑ 𝑓x	𝑥xx½¾º 	½¾º    (28) 

Here, xa is the frequency of strain a, Wba is the rate of mutation from strain a to b, and fa is the 
replication rate of strain a (which corresponds to its fitness in our treatment above). The last non-linear 
term is required to ensure that the strain frequencies, xa, are normalized. From a biological standpoint, 
this term embodies competition between strains and so the growth rate of strain a, fa, relative to the 
average replication rate of the prevailing strains, ∑ 𝑓x𝑥x<  is pertinent. 

Leuthäusser showed that Eigen’s equation describing a non-equilibrium process is isomorphic with the 
equilibrium statistical mechanics of a two-dimensional Ising model [72].  To see how this isomorphism 
emerges, define the following variable: 

𝑦º = 𝑥º	𝑒𝑥𝑝 ÀÁ 𝑑𝑡′	¯𝑓x𝑥x
<

F

Å
Æ																												(29) 

Using Eq. 28, the derivative of ya is given by: 

𝑑𝑦º
𝑑𝑡

	= 	𝑓º𝑦º 	−	¯ 𝑊½º𝑦º 	+ 	¯ 𝑊º½𝑦½						(30)
½¾º½¾º

 

Note that the variables, ya are not normalized anymore. The linear equation above can be written in 
discrete form as follows: 

𝑦½(1) = 	¯𝑊½º𝑦º	(0);			 �⃗�
º

	(1) = 	𝑊	�⃗�	(0)							(31)	 

We may view yb(1) to be proportional to the number of progeny of type b in generation 1, given that the 
number of strains of each type in generation, 0, is proportionally represented by the vector, y (0). The 
strain frequencies can be obtained from the vector y (1) as follows: 

𝑥º	(1) 	= 	
𝑦º	(1)

∑ 𝑦º	(1)º
										(32) 



 
 

20 

Each element of the matrix, W, is proportional to a transition probability for going from one strain to 
another in a single generation, as is made clear by the following argument. Suppose that our starting 
swarm of viruses is composed of a single strain, a, as is often the case for HIV infection since clinical 
evidence suggests that usually a single strain succeeds in establishing infection [REF].  If the number of 
copies of the initial strain, a, is N0, then the numbers of copies of the other strains, b, in generation, 1, is 
given by: 

𝑦½(1) 	= 	𝑊½º	𝑁Å							(33) 

and the frequency or probability of observing strain b in generation 1 is: 

𝑃½	(1) 	= 	 𝑥½	(1) 	= 	
𝑦½	(1)

∑ 𝑦½	(1)½
	= 	

𝑊½º	𝑁Å
∑ 𝑊½º	𝑁Å½

	= 	
𝑊½º

∑ 𝑊½º	½
	∝ 	𝑊½º						(34) 

The matrix, W, also has a Markovian character as it describes (within normalization factors) the 
transition probabilities between strains in one evolutionary generation, regardless of past history. This 
Markovian property of the process implies that we can represent the probability of observing the vector 
y (n) after n generations, given the vector, y (0), P [y (n); y (0)], as follows: 

𝑃	[𝒚	(𝑛); 𝒚	(0)] = 	∑ 𝑃	[𝒚	(𝑛); 𝒚	(𝑛 − 1)]	𝑃	[𝒚	(𝑛 − 1); 𝒚	(0)]𝒚	(GHA)   (35) 

Where the sum runs over all possible realizations of the elements of the vector y after (n-1) generations. 
This process can be repeated as follows: 

𝑃	[𝒚	(𝑛); 𝒚	(0)] = 	 ¯ ¯ 𝑃	[𝒚	(𝑛); 𝒚	(𝑛 − 1)]
𝒚	(GHL)

𝑃	[𝒚	(𝑛 − 1); 𝒚	(𝑛 − 2)]	𝑃	[𝒚	(𝑛 − 2); 𝒚	(0)]
𝒚	(GHA)

 

=	 ¯ ¯ ¯ 𝑃	[𝒚	(𝑛); 𝒚	(𝑛 − 1)
𝒚	(GHÍ)

𝑃	[𝒚	(𝑛 − 1); 𝒚	(𝑛 − 2)]
𝒚	(GHL)

𝑃	[𝒚	(𝑛 − 2); 𝒚	(𝑛 − 3)]	𝑃	[𝒚	(𝑛
𝒚	(GHA)

− 3); 𝒚	(0)] 

=	∑ ∑ ……∑ ∑ 𝑃	[𝒚	(𝑛); 𝒚	(𝑛 − 1)]	𝑃	[𝒚	(𝑛 − 1); 𝒚	(𝑛 −𝒚	(A)𝒚	(L)𝒚	(GHL)𝒚	(GHA)

2)]………𝑃	[𝒚	(2); 𝒚	(1)]	𝑃	[𝒚	(1); 𝒚	(0)]   (36) 

Within normalization factors, the transition probabilities across one generation in the last line of Eq. 36 
is the matrix, W. So, P [y (n); y (0)] can be calculated as follows. Repeated operation of the matrix W on 
a given y (0) (i.e., repeated matrix multiplication) yields the probability of a particular set of 
intermediate vectors, y (n), y (n-1)…….y (2), y (1), or the probability of a particular evolutionary 
trajectory. To obtain P [y (n); y (0)] we now need to sum over all such evolutionary trajectories that are n 
generations long by summing over all possible intermediate states. In other words, we have a path 
integral formulation, wherein the probability of any given evolutionary trajectory that starts from some 
founder strain is given by the nth power of the matrix W operating on this sequence, and the probability 
of observing various strains at generation n, P [y (n); y (0)], is given by summing over all possible 
evolutionary trajectories. If the matrix, W, contains information about the intrinsic fitness of strains and 
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the immune pressures that are in effect in different generations, P [y (n); y (0)] can be interpreted to be 
the prevalence landscape. 

Fig. 7 shows a pictorial depiction of an evolutionary trajectory. The spins (up or down) represent the 
identity of the amino acid at a particular residue in a sequence. The sequence depicted in a particular 
row is the progeny of the sequence above it. Thus, a particular configuration of this 2-dimensional Ising 
magnet represents an evolutionary trajectory. The weight of an evolutionary trajectory is the summand 
in Eq. 36. If this weight was known, we could sum over evolutionary trajectories of length n generations 
by sampling configurations of the evolutionary trajectories according to this weight. Keeping track of the 
frequency with which sequences were sampled in the nth generation would provide us with P [y (n); y 
(0)]; i.e., the prevalence landscape. Given that each term in Eq. 36 can be identified with the matrix W, 
to obtain the weights of each configuration of the Ising representation of evolutionary trajectories, we 
have to obtain the elements of W.  

How can we compute the elements of the matrix, W?  If µ is the mutation rate per replication cycle, dab 
is the Hamming distance (i.e., the number of residues wherein strains a and b have different amino 
acids), and l is the number of possible amino acids (in the Ising representation we are using for this 
illustrative calculation, l = 2), then Wba can be written as: 

𝑊½º 	= 	 𝑓º	(1	– 	𝜇)t	H	·¹Ñ 	�
𝜇

𝜆	 − 	1�
·¹Ñ

										(37) 

Where, like earlier, N is the length of the protein (i.e., the number of residues). 

In the formulas defining the prevalence landscape in the Ising representation (Eq. 3), the two types of 
possible amino acids (wild type and mutant) at residue, i, corresponded to values of zi equal to 0 and 1. 
Some of the expressions to follow are more transparent in the zi equal to ±	1 representation, and thus it 
is employed below; this will be made consistent later by a simple transformation when we explicitly 
incorporate considerations of strain fitness. With the {1, -1} representation, we can express dab as: 

𝑑º½ 	= 	¯
(𝑧/º 	−	𝑧/

½)L

4

t

/@A
	= 	

1
2
	Õ𝑁	–	¯ 𝑧/º𝑧/

½
t

/	@	A
Ö				(38) 

Using the fact that ax = exp [x ln a], and Eq. 38, allows us to express Wba as: 

𝑊½º 	= 	𝑓º	ℎ	𝑒𝑥𝑝	 À𝑀	¯𝑧/º𝑧/
½

/
Æ											(39) 

where h and M are defined as follows: 

ℎ	 = 	𝑒𝑥𝑝	 Õ
𝑁
2
	𝑙𝑛	(𝜇	(1 − 𝜇))Ö ; 		𝑀	 = 	

1
2
	𝑙𝑛	

(1	– 	𝜇)
𝜇

			(40) 

Notice that M is positive for a mutation rate of less than half, which is true for any realistic virus. 
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Let 𝑧Å====⃗ 	= 	 {𝑧/Å} be a vector of length N that specifies the values of the spin states corresponding to the 
amino acids at each residue, i, for the strain in generation 0; i.e., the founder strain. Eqs 39 and 40 state 

that the probability of occurrence of the strain, 𝑧A====⃗ 	= 	 {𝑧/A}, in generation 1, is proportional to W10 = 
	𝑓Å	ℎ	𝑒𝑥𝑝	Y𝑀	 ∑ 𝑧/A𝑧/Å/ `. Generalizing this for any two strains in consecutive generations, q and q + 1, we 

can write 𝑊¤�A	¤ 	= 	 𝑓¤	ℎ	𝑒𝑥𝑝	Y𝑀	 ∑ 𝑧/
¤�A𝑧/

¤
/ `.  

As per our previous considerations (Eq. 36, the discussion immediately following it, and Fig. 7), given a 
particular founder strain, the probability of observing a particular evolutionary trajectory, T, is 
proportional to the product: 

Ù𝑊¤�A	¤

GHA

¤@Å

	= 	Ù𝑓¤

GHA

¤@Å

	ℎ	𝑒𝑥𝑝	 À𝑀¯𝑧/
¤�A

/

𝑧/
¤Æ 

=	ℎG	𝑒𝑥𝑝	 Ú¯𝑙𝑛	𝑓¤
¤

	+ 	𝑀	¯¯𝑧/
¤�A

/

𝑧/
¤

¤

	Û 		(41) 

The normalized probability of observing a particular trajectory, T, is: 

𝑃	(𝑇) 	= 	
1
𝑍
𝑒𝑥𝑝	 Ú¯𝑙𝑛	𝑓¤

¤

	+ 	𝑀	¯¯𝑧/
¤�A

/

𝑧/
¤

¤

	Û 	= 	
1
𝑍
𝑒𝑥𝑝	(−𝐻	(𝑇)) 

𝑍	 = 	¯𝑒𝑥𝑝	(−𝐻	(𝑇))
�

						(42) 

where H (T) is the “Hamiltonian” corresponding to a particular trajectory, and Z is the “partition 
function” obtained by summing over trajectories. In this path integral formulation, the non-equilibrium 
dynamical problem under consideration is transformed in to studying the equilibrium statistical 
mechanics of a 2-dimensional ising model (Fig. 7). Each configuration of the Ising magnet represents an 
evolutionary trajectory.  Each row 𝑧/

¤  of this Ising model corresponds to a particular strain, and the next 

row 𝑧/
¤�A	is its progeny. Let us now assume that the fitness of a strain under immune pressure is as 

noted in Eq. 26. Then, Eq 42 can be rewritten as: 

𝑃	(𝑇) = 	
1
𝑍
𝑒𝑥𝑝	 Ú¯¯ℎ/𝑧/

¤

/

+	¯¯𝐽/2
/¾2¤

	𝑧/
¤𝑧2

¤ −	¯¯𝑏/�
¤𝑧/�

¤

/�¤¤

	+ 	𝑀	¯¯(1 − 2	𝑧/
¤�A)(1 − 2

/

𝑧/
¤)

¤

	Û

=
1
𝑍
exp[−	𝐻	(𝑇)]						(43) 

In writing Eq. 43, we transformed the spin variables to the {0,1} Ising spin representation from the ±	1 
representation for consistency among all the terms. The in-row couplings (Fig. 7) in Eq. 43 reflect the 
intrinsic fitness of a viral strain modulated by the immune response, and there is a nearest-neighbor 
ferromagnetic (recall that M is positive) coupling across rows that reflects mutational fidelity originating 
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from the fact that the mutation rate is less than half.  The immune pressure represented by the fields 
{bi

’} act only on a few selected residues in any one human, and different humans can impose immune 
pressure at different residues because they have different MHC genes and antibody responses.   

Note that only the probability of observing a strain in the last generation, n, has biological meaning. Just 
as in the Wright-Fisher simulations, we could assume that the intrinsic fitness landscape is the one 
inferred from the prevalence data and numerically sample trajectories of varying length, n (to mimic 
that the virus evolved for different times in each individual) in each of whom a different realization of 
the immune fields applies (drawn from the same statistical distribution as for the simulations). The 
probability of obtaining different strains in generation, n, thus obtained could then be compared with 
predictions from the assumed fitness landscape (inferred prevalence landscape) to obtain insights in to 
the relationship between the prevalence and intrinsic fitness landscapes.   

The formulation of Eigen’s equation as an isomorphic problem in equilibrium statistical mechanics, 
however, enables us to obtain insights via a standard approximate analysis; viz., to carry out Variational 
calculations using the Feynman-Bogoulibov bound. The partition function, Z (Eq 42), can be rewritten as: 

𝑍	 = 	∑ 𝑒𝑥𝑝	(−(𝐻	(𝑇) 	−	𝐻³	(𝑇)))	𝑒𝑥𝑝	(−𝐻𝑣	(𝑇));	
�
�Þ
	= 	 〈𝑒𝑥𝑝	(−(𝐻	(𝑇) − 𝐻𝑣	(𝑇))〉³	�   (44) 

where Hv (T) is a different Hamiltonian, 〈𝑒𝑥𝑝	(−(𝐻	(𝑇)〉³ indicates the average of the quantity in angular 
brackets using the Hamiltonian, Hv, and Zv is the partition function corresponding to Hv (T). Jensen’s 
inequality now tells us that the average of the exponential of a quantity (a convex function) is greater 
than or equal to the exponential of the average of the quantity, which leads us to: 

𝑙𝑛	𝑍	 ≥ 	𝑙𝑛	𝑍³	–	〈(𝐻	(𝑇) 	−	𝐻³	(𝑇)〉³    (45) 

If Hv is chosen properly, the right-hand side of Eq. 45 can be determined exactly. The resulting 
expression can then be maximized with respect to parameters in Hv to obtain an approximate 
Hamiltonian that variationally bounds the real Hamiltonian. Analysis of the properties of this 
variationally optimized Hamiltonian can lead to insights.  

The Hamiltonian used to infer the prevalence landscape is of quadratic form (Eq. 3), and so we choose 
Hv to be quadratic form: 

𝐻³(𝑇) =	¯ Ú−¯𝑎/
¤𝑠/

¤ −	¯ 𝐾/2
¤	𝑠/

¤𝑠2
¤

º¾½/

Û						(46)
¤

	 

where 𝐾/2
¤	and 𝑎/

¤	are in-row couplings and fields, respectively, the optimal values of which are obtained 

using the Variational approximation. The resulting equations are: 

𝜕 ln𝑍³
𝜕	𝑎/

¤ −	
𝜕 < 𝐻	(𝑇) −	𝐻³	(𝑇) >

𝜕	𝑎/
¤ = 0 
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𝜕 ln𝑍³
𝜕	𝐾/2

¤ −	
𝜕 < 𝐻	(𝑇) −	𝐻³	(𝑇) >

𝜕	𝐾/2
¤ = 0										(47) 

Solving these equations while taking care to separate the surface layer from the others (see earlier 
comment about only the probabilities of observing the surface layer being interpretable) obtains the 
following formulas for the Variationally optimal couplings and fields in the nth (surface) generation:  

𝑎/G = 	ℎ/ − 2𝑀	(1 − 2 < 𝑧/G >³) +	𝑏/�G 

𝐾/2G = 	 𝐽/2											(48) 

In obtaining the first line in Eq. 48, we have assumed that < 𝑧/G >³=	< 𝑧/GHA >³.  Since < 𝑧/G >³  is the 
average of whether a mutant or wild-type amino acid is present at residue i in generation, n, this 
approximation should be reasonably good for µ < 1 and sufficiently large, n. The details of the algebra in 
going from Eq 47 to Eq. 48 is left as an exercise for the reader, and is available in reference [].  

Interestingly, the Variational approximation predicts that the effects of the immune fields and 
mutational fidelity does not alter the couplings observed in the prevalence landscape from the intrinsic 
values. The expression for 𝑎/G, however, shows that the fields inferred from sequence data on prevailing 
strains should be different from the ones that describe the intrinsic fitness landscape. Notice also, that 
𝑎/G is not determined explicitly by Eq. 48 because its right-hand side depends on Hv through < 𝑧/G >³. Hv 
cannot be determined without knowing 𝑎/G. So, Eq. 48 must be solved self-consistently to obtain 𝑎/G, as 
is typical for such variational, or mean-field, calculations.  

However, several key insights in to the biological problem at hand can be obtained without carrying out 
such a calculation. In order to study the relationship between the inferred prevalence landscape and the 
fitness landscape, the term representing the immune pressure in Eq. 48 must be averaged over that 
corresponding to people with diverse genotypes. This is because the sequence data was collected from 
diverse patients, or equivalently, the circulating strains have evolved in response to diverse immune 
pressures. One convenient way to visualize and analyze the problem at hand (see earlier comments 
following Eq. 43) is to consider a single long trajectory that started with a founder strain and wherein 
the imposed immune fields changed location after a varying number of generations. The switch in 
locations of the immune fields corresponds to a new infected person. The sequences were collected 
from diverse patients (i.e., after different numbers of evolutionary generations, n. So, to estimate 𝑎/G, 
we must average over various values of n. Let us denote the value of < 𝑧/G >³ averaged over various 
generations, n, as < 𝑧/ >³, and the value of 𝑏/�G averaged over many generations and human genotypes 
(or types of immune pressure) as < 𝑏/ >. After these steps of averaging, we obtain: 

𝑎/ = 	ℎ/ − 	2𝑀	(1 − 	2 < 𝑧/ >³)+	< 𝑏/ > 											 (49) 

Therefore, the Variationally optimized Hamiltonian that incorporates the effects of immune pressure, 
mutational fidelity, and intrinsic fitness (i.e, the Hamiltonian corresponding to the prevalence landscape) 
can be written as: 
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𝐻³ = 	−¯𝐽/2	𝑧/	𝑧2 −¯[ℎ/ − 2𝑀	(1 − 	2 < 𝑧/ >³)+	< 𝑏/ >]	𝑧/	
/

																	(50)
/¾2

 

Eqs. 49 and 50 provide insights in to the relationship between the prevalence and fitness landscapes as 
well as the underlying biological factors that determine this relationship for HIV. 

Perhaps, the reader has wondered why the external fields corresponding to the immune pressure are 
assumed to depend only upon the current generation (or time). Why can a person that was originally 
infected be infected later along the evolutionary trajectory, and mount effective memory responses 
elicited earlier. This would correlate the immune fields across time, thus significantly complicating the 
analysis. The simplification originates in the fact that, although a few HLA-epitope combinations have 
been associated with better outcome in infected persons [24], HIV is not known to have been cleared in 
any infected person. So, the global population of HIV has largely not been persistently subjected to a 
few effective classes of natural or vaccine-induced immune responses. Therefore, the global HIV 
population has not evolved in narrowly directed ways to avoid past effective herd memory responses in 
the human population. Contrast this situation with that for influenza, which has been subjected to 
effective vaccine-induced or natural antibody responses, which continuously drive the evolution of the 
global influenza population in specific directions to evade such responses. The simplification wherein the 
immune fields do not depend on past times for HIV cannot be made for studying influenza. 

Note that because hi is negative and < 𝑏/ > is positive, Eq. 50 implies that the effect of the immune 
pressure is to make the virus more mutable than the intrinsic fitness of the virus would suggest. This 
reflects that the immune pressure imposed at certain residues promotes mutations because the 
resulting mutant viral strain is no longer subject to immune attack, thus making the mutant effectively 
more prevalent. Thus, human immune pressures promote the exploration of sequence space by the 
virus population. Because of the great diversity of immune (especially T cell) responses in the human 
population, most regions of the viral proteome are targeted by a small fraction of people; so, 𝑏/� acts 
only for a small number of evolutionary generations corresponding to the fraction of individuals who 
target residue, i, with their immune responses. Thus, we are led to the conclusion that < 𝑏/ > has a 
relatively small value. 

 The term, < 𝑧/ >³, is expected to be less than one half. This is because the mutation probability is less 
than half, and also because HIV is a chronic infection that is transmitted from one host to another. If the 
virus is forced to make an immune evading mutation in a particular individual and this mutation has an 
intrinsic fitness cost, such deleterious escape mutations can revert over time when the virus is 
transmitted to a new host (whose immune response likely will not target this residue) [73]. Therefore, in 
Eq. 49, the term, −2𝑀	(1− 	2 < 𝑧𝑖 >𝑣), adds a negative value to ℎ𝑖, making it more difficult to 
observe a mutation at residue, i, in the prevalence landscape.  If we compare two strains, this term is 
added to the Hamiltonian for every residue for which the amino acids in the two strains are different. 
The prevalence of two strains that are equally intrinsically fit could thus be different. The strain that has 
to many more mutations compared to some reference strain will be less prevalent. However, this 
confounding effect of mutational fidelity is likely to be significant only if we compare strains that differ 
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from each other by many mutations. For strains that differ by just a few mutations from each other, as 
those that evolve in a single patient over time, this effect is likely to be small. Note also that this effect is 
further mitigated by recombination of different viral strains during infection and replication. 

 The above arguments and analyses suggest that while human immunity is an important driver of HIV 
evolution, its overall effect on the relationship between prevalence and fitness is likely to be 
perturbative on the relationship between prevalence and fitness. The effects of mutational fidelity 
should be significant only if we compare strains that differ from each other by large mutational 
distances. A way to summarize our conclusions is that, within some range of mutational distances, the 
HIV population is at steady state. Thus, for purposes of comparing the fitness of strains within this range 
of mutational distances, the probabilities of prevailing viral strains using maximum entropy models may 
reflect their rank order of intrinsic fitness. This is decidedly not the case for influenza as it is strongly and 
continuously driven out of equilibrium for reasons that were noted earlier. Using very different methods 
than that described above, recent work has also shown that patterns of HIV diversity over long times in 
single infected patients are mirrored by those across different infected individuals, supporting the claim 
that universal information about HIV fitness can be derived from prevalence data [74]. 

We can test the arguments developed above in an approximate manner without carrying out the self-
consistent calculation for < 𝑧/ >³. We can estimate the value of this quantity from the Wright-Fisher 
like simulations described earlier as these results include the effects of immune pressure and mutational 
fidelity. This approximation is likely to be accurate under two assumptions: 1] The Variationally 
determined Hamiltonian is a good approximation to H (T), and therefore, to Eigen’s equation. 2] Eigen’s 
equation (which holds for an infinite population size) is a good approximation to the simulations which 
were carried out with a finite population size. The latter is expected to be true when the mutation rate 
multiplied by the finite population size is greater than unity, which is the case in the simulations. The 
value of < 𝑏/ > can also be obtained from the simulations, and they reflect clinical information on the 
characteristics of the immune pressure (see discussion following Eq. 26).  

Using the values of < 𝑧/ >³ and < 𝑏/ > estimated from the simulations it was found that, for the p17 
HIV protein, with high statistical accuracy, the Hamiltonians corresponding to the intrinsic fitness and 
prevalence are monotonically correlated (Fig. 9). This result suggests that the relative intrinsic fitness of 
HIV strains can potentially be adequately described by inferring a prevalence landscape using a 
maximum entropy formulation. 

Of course, in individual hosts the virus evolves to evade host immunity, forcing HIV to adapt and explore 
the sequence space. If a mutation that evades host immunity comes at a substantial fitness cost to the 
virus, compensatory mutations often arise to restore lost fitness, and so mutations at these 
combinations of residues are observed more frequently than by chance in the circulating virus 
population. Similarly, some combinations of mutations that are especially deleterious for the virus are 
observed less frequently than by chance. These correlations, which reflect intrinsic viral fitness effects 
observed because host-pathogen riposte forces the virus to sample sequence space, are reflected in our 
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inferred landscape. Thus, the inferred landscape describes the collective mutational pathways that HIV 
can uses to evade host immunity and those that it cannot.  

Tests against in vitro measurements and clinical data 

The approximate calculations and biological arguments noted above seem reasonable. But, they pertain 
to a very complex problem, and could also be incorrect. Therefore, the veracity of our conclusion that 
the inferred prevalence landscape for HIV proteins is an adequate proxy for intrinsic fitness can only be 
established by testing predictions against in vitro experiments and clinical data. This is consistent with 
the scientific method, and common sense. Consider in vitro experiments first.  

Tests against in vitro measurements of fitness 

The inferred fitness landscape can be used to calculate the value of the Hamiltonian (or “energy”) 
corresponding to particular mutant sequences relative to a reference sequence. The model would 
predict that the replicative fitness of the mutant strain relative to that of the reference sequence should 
correlate negatively with the energy difference between the mutant strain and the reference sequence 
(Eq. 3). The mutant sequences for which predictions are made can be generated through site-directed 
mutagenesis, and then their relative fitness can be measured by assaying their growth rates when 
placed in culture with human cells that HIV can infect. Notice that such experiments are carried out in 
the absence of immune pressure, and so reflect the intrinsic fitness of mutant strains. Fig. 10a shows 
such a comparison between experiments and model predictions for 43 strains of HIV with mutations in 
the Gag polyprotein [46,79]. As is evident, while not perfect, the comparison is reasonably good. The 
ENV polyproteins comprise the spike on the surface of HIV particles. The fitness landscape of ENV is the 
hardest to infer because of its long length and much higher variability compared to other HIV 
polyproteins. Fig. 10b shows a comparison between predictions based on the inferred landscape and 
roughly 100 in vitro measurements of infectivity. Again, the comparison is reasonable. 

We can ask how whether it is important to infer a landscape that includes the effects of epistatic 
interactions. Would the quality of the predictions be worse if we inferred a model with the fields only? 
Fig. 10c shows results comparing predictions made with such a landscape for the Gag mutants that were 
tested in Fig. 10a. As can be seen, the comparison is worse. But, the study with Gag mutants was done 
as a part of a collaboration between immunologists and the physical scientists who inferred the 
landscape. They were interested in testing whether the predictions made for epistatic interactions were 
correct. So, some of the mutant strains that were tested included strains with mutations that were 
predicted by the inferred landscape to be strongly coupled (as per the magnitude of the corresponding 
Jij values). The fitness measurements for the ENV mutant strains were conducted independently, and 
before, the predictions using the fitness landscape. As has been noted before, the matrix, J, is sparse 
because mutations at many residues in a protein are not coupled. As a result, if you take a random set of 
mutant strains (as for ENV) and compare fitness predictions using landscapes inferred with or without 
the couplings, the differences are not substantial as many strains do not have mutations at residues that 
are coupled (Fig. 10d). But, as we have noted earlier, because of the high mutation and replication rates 
of HIV in vivo, rare sets of mutations in coupled residues could be sampled to affect the virus’ ability to 
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evade human immunity. We will shortly discuss comparisons with in vivo clinical data that will make this 
point vivid. However, the importance of these effects can be seen in other ways as discussed below. 

Tests against structural data 

We anticipate that mutations in residues that are in contact, or in close spatial proximity, in the 
functional structure of a protein or protein complex are more likely to be coupled. Thus, the values of 
the elements of the matrix J corresponding to these residues should be relatively high. Evidence for this 
for HIV was provided even by the simple analyses of covariance matrices using random matrix theory 
outlined in an earlier section of this chapter. For example, structural reasons were noted for why set of 
residues in the p24 protein appeared to co-evolve and disfavor multiple simultaneous mutations 
(corresponding to negative elements of the “cleaned” correlation matrix). These residues are shown 
superimposed on the structure of p24 in Fig. 11a. This visualization does not provide much insight in to 
why the identified residues might be negatively coupled or co-evolve. Six p24 proteins form hexamers 
that tile the viral capsid. In Fig. 11b, the p24 residues marked in Fig. 11a are superimposed on the 
structure of this hexamer and that of the interface between hexamers. Now, one can see vividly that a 
majority of these residues are involved in intra-hexamer and inter-hexamer contacts between p24 
proteins. Thus, they are likely to co-evolve and simultaneous mutations in pairs of such residues are 
likely to destabilize the capsid and make the virus unviable. 

More generally, a large number of studies have been conducted to study bacterial protein families using 
methods similar to the maximum entropy models that we are considering. Methods have been 
developed to determine whether two residues are directly coupled (or in contact) based on the J matrix. 
One such method is the Direct Coupling Analysis (DCA), which we do not discuss here. The interested 
reader is directed to [xx]. 

Let us explore whether applying the DCA method to the inferred fitness landscape of the ENV protein 
can predict residues that are in contact in the viral spike of HIV. This is a prediction that strictly relies on 
the importance of the J matrix. Note also that since the J matrix was inferred from viral sequences in 
vivo, we expect that it reflects important contacts in the functionally relevant trimeric spike of HIV, not 
monomers of the constituent ENV proteins. The native HIV spike is very unstable and so has proven to 
be difficult to crystallize. A mimic has been prepared by stabilizing the trimer with a few disulfide bonds. 
The structure of this mimic, called SOSIP, is available. So, it may be appropriate to test predicted 
contacts against this structure. Fig. 12a shows a comparison of the predicted contacts (function of J) to 
the crystal structure. As is evident, the top twenty predicted values are true positives with high 
probability. A large fraction of the false positives is in the V2 loop of the trimeric spike or in CD4 contact 
residues. As noted earlier, upon binding to CD4 on host cells, the ENV proteins that make up the HIV 
spike undergo conformational changes. Indeed, conformational changes in the V2 loop upon CD4 
binding are well-documented. So, it is possible that the predictions from our inferred landscape reflect 
this in vivo effect that is obviously not captured in the SOSIP crystal structure. 

Another study highlights the ability of the fitness model to capture the effects of interactions between 
mutations [80]. HIV protease, which plays an important role in viral replication, has been the target of 
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antiretroviral drug therapy through a class of drugs known as protease inhibitors. The virus is able to 
evolve mutations that increase its resistance to protease inhibitors, but these may be associated with 
substantial fitness costs to the virus. In such cases, the drug resistance mutations that are most likely to 
be relevant should be the ones whose fitness costs can be compensated by other mutations. One may 
then ask whether the inferred fitness landscape can identify potential drug resistance mutations based 
on the values of the coupling constants in the Hamiltonian. Specifically, when coupling constants 
corresponding to compensatory interactions exceed a certain value, the strain bearing both the 
mutation that confers drug resistance and the additional compensatory mutation becomes sufficiently 
fit. This condition Jij=-hi-hj, can be thought of as a level-crossing phenomenon in statistical mechanics. 
Fig. 12 b shows that model predictions compare increasingly well with observed drug-resistance 
mutations as the cut-off value for the coupling constants increases [80]. These results again suggest that 
the inferred landscape can capture effects of coupling between mutations on the virus’ intrinsic fitness. 
It could be argued, however, that predictions emerging from the inferred could be good simply because 
it reflects the presence of drug-resistance mutations in the population of circulating viruses today. 
Therefore, the landscape for protease was inferred using only sequences that were obtained prior to 
1996 (the year that antiretroviral therapy was introduced).  

Tests against clinical data 

One can test predictions emerging from the fitness landscape against clinical data on infected persons in 
a number of different ways. There exist cohorts of patients, called elite controllers, whose immune 
systems can control HIV infections without any therapy by maintaining very low viral loads. This small 
fraction of individuals have not progressed to AIDS, and are less likely to infect other individuals. A 
number of factors have been posited to explain how elite controllers achieve viral control. In genome-
wide studies, the strongest correlation is observed with the MHC (HLA for humans) genes that they 
possess. Some HLAs, such as HLA B57 and HLA B27 are strongly overrepresented in elite controllers. As 
we have discussed in Chapter 3, a part of the reason is likely the statistically more cross-reactive TCR 
repertoire of individuals with these genes. Another reason that has been noted by comparing cohorts of 
controllers and progressors who have the same HLAs, is that the T cells of controllers exhibit more 
effective polyfunctional responses. Some studies have also implicated the antibody response of these 
patients. However, the factor that is implicated most strongly is the HLA genes they possess and the 
peptides presented by them. Predictions using the HIV fitness landscape inferred using methods 
described in this chapter are consistent with the idea that mutations at residues in the peptides targeted 
by the T cell response in elite controllers is associated with relatively large fitness penalties.     

As noted earlier, analysis of the covariance matrix associated with sequences of Gag proteins showed 
that certain sets of residues in p24 that are involved in creating key protein-protein interfaces in the 
viral capsid co-evolve, and simultaneous mutations in several pairs of residues at these sites are 
observed less frequently than by chance. These results suggest that multiple mutations at these residues 
are especially deleterious for the virus. Consistent with this finding, elite controllers disproportionately 
target peptides that contain these residues. One can use the quantitative fitness landscape inferred 
using the Potts model to make more comprehensive predictions. For example, one can estimate the 
fitness cost incurred by mutations at any residue, averaged over all possible sequence backgrounds. 



 
 

30 

Averaging over the sequence backgrounds thus takes in to account epistatic effects between mutations. 
One possible way to compute the average fitness penalty is as follows: 
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Here 𝛿𝐸	(𝑧S�====⃗ , 𝑧S====⃗ )	 is the average energy cost of evolving a non-synonymous mutation in the targeted 
peptide, zp is the epitope sequence being targeted, zp’ is the epitope sequence with a single non-
synonymous mutation, and zr is the rest of the protein sequence. The average is computed over all 
possible sequence backgrounds, zr. This is carried out using standard Monte-Carlo simulations with the 
fitness landscape (Eq. 3). Eq. 51a therefore reflects the fitness cost of evolving a particular escape 
mutation in all possible sequence backgrounds, and includes the coupled effects of mutations. Eq. 51b 
then computes an average cost of evolving a mutation in the epitope, averaged over the possible 
mutations. This way of calculating the latter average emphasizes the contributions of mutations with the 
lowest fitness costs, as they are the most likely to evolve. Using this metric of the fitness cost, it can be 
shown that elite controllers target peptides associated with high fitness costs for evolving mutations in 
all possible sequence backgrounds.  Thus, such escape mutations do not emerge rapidly and the 
individual’s T cell response can control the virus to low levels, regardless of other mutations that the 
virus may evolve. With a vaccine-induced T cell response, one would like to elicit such responses that 
can corner the virus between being killed by T cells or evolving mutations that are likely to make the 
virus unviable. 

In a cohort of patients  from the US, Malawi, and South Africa, a comprehensive analysis of CTL 
responses in the early stages of infection was carried out [81]. The epitopes that were considered were 
those targeted by the individual patients during a time frame spanning a range from the first detection 
of virus to shortly after the viral load peaked (see Fig. 4). In these patients, the virus evaded the 
predominant T cell responses directed toward these epitopes via escape mutations. The time required 
for these mutations to evolve and their locations were recorded.  

The peptides, or epitopes, targeted by the T cell responses are usually detected using an experimental 
assay called ELISPOT.  Peptides comprised of overlapping residues of peptides derived from viral 
proteins are presented on human APCs and displayed in different wells. Blood samples from patients 
contain T cells. These T cells secrete cytokines, in particular IFNg, when they interact with their cognate 
peptide. One counts the number of “spots” of these cytokines that are secreted in individual wells. The 
number of spots thus detected corresponds to the extent to which a particular epitope is being targeted 
in the patient. In this manner, one can determine which epitopes are being targeted by a patient’s T 
cells, as well as the relative immunodominance of the epitopes being targeted. Epitopes targeted more 
dominantly are under stronger selection pressure to evolve mutations. 



 
 

31 

The time taken for a particular escape mutation to take over the population of viruses (escape time) in a 
patient can also be estimated if blood samples are collected at different times. Often, the samples are 
not collected at regularly spaced intervals, and the escape time could correspond to a time point at 
which a sample was not collected. One way to estimate the escape time from such data has been 
proposed by Perelson and co-workers []. The data consists of two time ordered vectors: 

𝑛=⃗ = {𝑛A, 𝑛L, ……… . 𝑛/ …… . . 𝑛�}				𝑎𝑛𝑑		𝑘=⃗ 	=		 {𝑘A, 𝑘L, ……… . 𝑘/ …… . . 𝑘�}                    (52) 

where ni is the number of viral sequences and ki is the number of these sequences with an escape 
mutation at a targeted epitope observed at time point, ti. One can then use a logistic form for the 
fraction of sequences, f (t), with an escape mutation at time, t: 

𝑓	(𝑡) = 	
𝑓Å

𝑓Å + (1 − 𝑓Å)𝑒HìF
											(53) 

Here f0 and e are parameters that reflect the fraction of sequences with an escape mutation at time zero 
and the rate at which the logistic equation saturates to unity, respectively. One may interpret f (t) to be 
a probability of observing an escape mutation at time, t. Therefore, one can write the following 
expression for the likelihood (L) of the observed data (Eq. 52): 
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Maximizing L with respect to the parameters, f0 and e, provides an estimate for them based on the data. 
These values of f0 and e can then be used in Eq. 53 to determine the time point at which half the viral 
population is comprised of a sequence with an escape mutation in the targeted epitope (f (tescape) = 0.5).  
Data sets like these, which provide information on the epitopes targeted by T cells in individual humans 
and estimates of the locations of escape mutations and the escape times offer several opportunities to 
further test inferred fitness landscapes.  

For example, the data provide vivid examples of how the time to escape is influenced by the sequence 
background of the virus (or the J matrix). This is best done by comparing pairs of patients that target the 
same peptide, but the escape mutation evolves over very different time scales. Fig. 13 illustrates one 
such example. Two patients, labeled CH185 and CH159, target the same epitope in Gag. In CH185, the 
escape mutation evolved in 122 days after the T cell response was first detected, while in CH159 the 
escape mutation had not evolved in over 1100 days. Fig. 13 shows that this is because of differences in 
the sequences of the viruses that infected these individuals. The circles in the figure depict the rest of 
the protein that contains the targeted epitope. The marked residues are those where mutations existed 
in the virus that infected the patient. Blue curves indicate that the fitness landscape predicts that the 
element of the J matrix corresponding to the preexisting mutation and the ultimate escape mutation is 
positive (compensatory). Red curves indicate negative values of the corresponding element of the J 
matrix (antagonistic interactions). The thicknesses of the lines reflect the relative magnitudes of the 
predicted J-couplings. Patient CH159 was infected with a viral strain that, compared to the infecting 
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strain in CH185, contained more mutations that coupled negatively (and strongly) to the putative escape 
mutation. Therefore, it was much more difficult for the escape mutation to evolve and grow out in 
patient CH159. Table 1 shows other examples of such a situation in this cohort of patients, further 
highlighting the importance of epistatic couplings between mutations for host-pathogen riposte in 
individual humans. The values of < ∆	𝐸 > reported in Table 1 were computed using Eq. 51. 

Eq. 51 reflects the shortest path to evolving an escape mutation and does not account for the dynamics 
of the evolution of the virus in response to T cell pressure. Thus, it does not properly account for the 
evolution of complex evolutionary trajectories. As one example of phenomena not captured by Eq. 51, if 
more feasible trajectories are available for an escape mutation to emerge at a particular residue or 
epitope, escape is facilitated because the “entropy” of escape trajectories is higher. The importance of 
such effects and the veracity of fitness landscapes can be tested by attempting to predict the dynamics 
of virus evolution in individual patients in the cohort described above. Specifically, one can ask if it 
possible to predict the residues at which escape mutations emerged, and the relative times required for 
this to happen in these patients by combining Wright-Fisher like evolutionary dynamics with the inferred 
fitness landscapes and knowledge of the targeted epitopes (and their relative immunodominance) [82].  

The Wright-Fisher simulations can be carried out as described in the section on connecting the 
prevalence and fitness landscapes. A constant population size is not a very good approximation in some 
of the cases in the data being considered now because the virus population size is still rising if escape 
occurs before peak viremia. However, let us examine the results that emerge from such approximate 
calculations. Future studies may be able to improve on these studies by not making the approximation 
of constant population size. The population size that was used in the studies described in [82] is 104 virus 
particles, which corresponds to the effective population size for HIV populations in individual patients. 
This has been estimated as ADD THIS FROM PAPERS.   

The inputs to the Wright-Fisher simulations from the data are the fraction of each sequence in the virus 
population when the T cell response was first detected, the targeted epitope, and the relative 
immunodominance of the targeted epitope. If sequence data was not available at the time point when 
the T cell response was first detected, the most recent recorded sequences are used. Mutations are 
carried out at the nucleotide level in the simulations. This is important because mutation rates are 
known for nucleotides, not amino acids, and because this is the only way that allows proper treatment 
of mutational paths (transitions between certain amino acids are simply not possible in one step).  

Recombination of viral genomes can also occur if two different RNA strands (or viral genomes) are 
simultaneously present. The rate of recombination for HIV has been estimated by Neher and Leitner []. 
Recombination can be simulated during the evolutionary dynamics in a simple way. Let r be the rate of 
recombination events per base pair per replication cycle. During replication of each sequence in the 
Wright-Fisher simulations, we pick the number of recombination sites (n) with the binomial probability 
distribution, 𝑝	(𝑛) = 𝐶Gt	𝑟G	(1 − 𝑟)tHG, where N is the length of the protein or genome under 
consideration, and 𝐶Gt is the number of ways of choosing n locations out of N. If the number of 
recombination sites thus picked is greater than zero, the specific locations of the recombination sites are 
picked from a random uniform distribution. A partner sequence is then picked from those in the 
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evolving swarm from a uniform random distribution. As an example, consider two recombination sites, i 
and j. Then the recombined sequence has the original sequence between residues 1 to i, the sequence 
of the randomly picked other sequence from i+1 to j, and the original sequence from j+1 to L. This 
process mimics Reverse Transcriptase falling off of one RNA strand, hopping to another, and then 
returning. This is possible because RT is not a very processive enzyme.  

Because the Potts models are inferred at the amino acid level, the fitness estimates used during the 
selection step are done at the amino acid level. The survival probability or probability of being positively 
selected can be written in a manner analogous to Eq. 27 as follows: 

𝑃�²a³ = 	
𝑒H½	ê(-⃗)

< 𝑒H½ê > +	𝑒H½	ê	(-⃗)
	 ; 																	(55) 

where the average is computed over the prevailing virus population. 

The main difference between Eq. 27 (and accompanying comments) and Eq. 55 is that we have 
introduced a quantity analogous to “inverse temperature” in statistical physics (b = 1/kBT, where kB is 
Boltzmann’s constant and T is temperature). This parameter can be obtained by graphing the logarithm 
of in vitro replicative capacity measurements against values of E (z). The value of b thus obtained for 
Gag mutants, for example, equals 0.07 [79]. It is worth reflecting on why b < 1. The intrinsic fitness of a 
strain, without time to evolve mutations, is measured in the in vitro experiments. Let us denote the 
energies corresponding to the intrinsic fitness of a strain and its prevalence by E’ (z) and E (z), 
respectively. So, the prevalence, P (z), and the intrinsic fitness, f (z), are given by: 

𝑓	(𝑧) 	∝ 	𝑒Hê�	(-⃗); 				𝑝	(𝑧) 	∝ 	 𝑒Hê	(-⃗) (56) 

Now, E (z) contains the effects of immune pressure, mutational fidelity, reversion of the mutations 
induced by immune pressure, and other effects discussed in the section on connecting prevalence and 
fitness of the circulating HIV population. The immune pressure promotes sampling of sequence space by 
promoting mutations at targeted residues in a single host. But as discussed earlier, averaged across the 
population of hosts, the immune fields acting at HIV protein residues are expected to be small because 
of the diversity of human immune responses. Reversion of mutations induced by a host’s immune 
response when infection propagates to hosts that do not target the same epitopes, the contributions 
due to mutational fidelity, and recombination are all forces that drive the circulating HIV population to 
remain close to the fittest strains. If these forces are strong, as indicated by the data following virus 
evolution in single patients over long times [], then one might conjecture that the probability of 
observing a mutant strain in circulation is likely to be less than what one might expect from intrinsic 
fitness considerations alone. For example, a strain that is a mutant compared to the consensus (or 
reference) strain may have evolved to avoid someone’s immune response and may be quite fit. But, if it 
is less fit than consensus and is not targeted further by another host’s immune response, then this 
mutation will revert. So, the mutant may be less prevalent than intrinsic fitness alone might predict. 
Thus, one might posit that P (z) samples a distribution that is at a lower temperature (it samples lower 
fitness strains less) compared to that expected based on intrinsic fitness considerations alone. In other 
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words, if kBT, the natural energy scale for intrinsic fitness equals unity, b E (z) = E’ (z) = ln f (z), with b < 1. 
Note that for the Wright-Fisher like simulations, it is the value of the intrinsic fitness that we need since 
immune pressure, mutational fidelity, etc are explicitly treated. This is the reason underlying the use of 
Eq. 55 for the survival probability of a strain. 

Note that because the T cell responses were measured experimentally, it is possible to include the 
effects of each individual’s immune system in the model. To mimic the killing of infected cells by 
epitope-specific T cells, all virus strains that contain a targeted epitope have their fitness decreased by a 
fixed amount. One way to do this is to multiply 𝑓	(𝑧) = 	 𝑒H½	ê	(-⃗) by a factor of e-b, which is tantamount 
to adding a positive constant, b, to b E (z) to account for the decreased fitness of a strain with a targeted 
epitope. As noted earlier, the available data also contains information on the relative 
immunodominance of the epitopes. This information can be incorporated in to simulations by writing 
the following expression for the fitness penalty of targeted epitopes, b: 

𝑏 = (1 −%𝐼)𝑏ñ/G + %𝐼	𝑏ñ¥¸																							(57) 

where %I is the relative immunodominance (varies between 0 and 1), bmin and bmax are the minimum and 
maximum values of the penalty in fitness due to immune pressure, respectively. The choice of bmin made 
by Barton and co-workers was sufficiently high that all targeted epitopes had a selection force that 
would force escape. In particular, bmin/b was somewhat larger than the highest value of < ∆	𝐸 > among 
targeted epitopes.  

One can conservatively assume that any nonsynonymous mutation within a targeted epitope is 
sufficient to allow the virus to avoid detection by epitope-specific T cells. Though this assumption is not 
always correct, there is experimental evidence that most mutations within an epitope tend to 
substantially impair T cell recognition as we have discussed before [83]. 

In the evolutionary dynamics, the steps of replication, mutation, and selection occur in a single step. 
However, biologically these steps are separate and involve different time scales. Mutation occurs rapidly 
during the reverse transcription of the viral RNA into DNA and during replication, while selection 
effectively operates at the level of infected cells (which may or may not successfully produce new 
viruses, and which may be killed during the replication process by cytotoxic T cells); a typical lifetime of 
infected cells is around 2 days when productively infected [20]. Also, as noted above, the simulations 
under consideration operate in the regime of very strong selection for escape, so that escape is favored 
even at epitopes where the fitness cost of mutation is high. For these reasons, it is difficult to precisely 
connect generations of evolution in the simulations of virus evolution to real time. The predicted 
generations of evolution required for escape mutations to emerge reflect relative rates at which escape 
occurs at different epitopes, which is the best that one can hope for from such coarse-grained 
simulations.  

The evolutionary dynamics described above are carried out with many approximations, and efforts to 
carry out more realistic simulations are necessary. Overall, however, when compared to the specific 
clinical data being considered, the effect of these assumptions appears to be relatively mild.  For 
example, model predictions for the most likely and second most likely locations for escape mutations 
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matched the clinical data in roughly 86% of the cases. Figure 14 shows that the clinically measured 
escape times compare reasonably well with the predicted evolutionary generations (Spearman 
correlation of 0.73). The latter were predicted by averaging over many simulations for the same epitope, 
and the error bars show the variance in the results. There is considerable scatter, especially for cases 
where escape is neither very fast or slow; but, the error bars show that the rough order is correctly 
predicted by the simulations. Two other points are noteworthy. The first is that if we only use Shannon 
entropy of the epitopes to predict relative escape times, then the Spearman correlation with the clinical 
data is only -0.22 (epitopes associated with higher entropy escape faster). This shows that the effects of 
coupling between mutations is important. The second point to note is made clear by considering 
simulations where we do not account for relative immunodominance (values of %I in Eq. 57). Then the 
predicted times for escape correlate with the clinical data with a lower Spearman correlation of 0.53. 
The nature of the epitope targeted, as characterized by the fitness costs of evolving mutations therein in 
diverse sequence backgrounds and the number of possible escape paths with low fitness cost that are 
available for an epitope, are important determinants of escape time. The other important determinant 
is the selection pressure imposed by the T cell response to evolve mutations. The higher the 
immunodominance (value of %I), the higher the selection pressure. In fact, if only the values of %I are 
used to predict escape times, a Spearman correlation of -0.53 is observed [x]. The results of evolutionary 
dynamics taking both the fitness characteristics of the targeted epitopes and immunodominance into 
account lead to the highest correlation between computational and clinical results (Spearman 
correlation of 0.73). 

An important question for future exploration is to determine the extent to which the discrepancies 
between clinical data and predictions can be ascribed to different approximations made in the 
simulations of evolutionary dynamics or errors in statistical inference of the fitness landscape. For 
example, is the comparison with data better if we do not make the approximation of constant 
population size, or do not encapsulate mutation/replication and selection in one effective time step (by 
treating infection of new cells as a separate step)? Also, in the studies described, the evolutionary 
dynamics of escape was considered only one epitope at a time. In reality, multiple epitopes are 
simultaneously targeted in a single individual. Addressing these deficiencies are topics for future 
research. 

Based on the progress made so far and on positive correlations between predictions and data, 
immunogens can be designed for the T cell component of a vaccine which contain only parts of the HIV 
proteome as per considerations noted early in this chapter. A major engineering challenge here is 
devising carriers and adjuvants that can efficiently deliver long peptide immunogens, an issue that also 
confronts the development of cancer vaccines. This topic is beyond the scope of this book. 

Appendix 

Connection between Statistical mechanics and information theory 

A primer on elementary statistical mechanics 
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In this appendix, we briefly describe the connection between statistical mechanics and information 
theory that led us to define the entropy of circulating sequences of HIV proteins as shown in Eq. 2. 

We begin with some brief reminders of elementary statistical mechanics. Consider a macroscopic 
system with a fixed number of particles, volume, and energy (denoted by N, V, and E, respectively). The 
use of N for the number of particles is standard in most books on statistical mechanics, and is not to be 
confused with the protein sequence length for which the symbol N was used in the main text of this 
chapter. There is an ensemble of states consistent with the macroscopic state with fixed N, V, and E, and 
this ensemble is referred to as the microcanonical ensemble. All microscopic states in this ensemble are 
equally likely, and so, the probability, P, of being in any one of the microstates is: 

𝑃 = 	 A
ò

  (A1) 

where Ω is the total number of microstates in the ensemble. A basic tenet of statistical mechanics 
proposed by Boltzamann is that the entropy, which is a measure of disorder or uncertainty in the 
system, equals 𝑘? ln Ω in the microcanonical ensemble.  

As it is difficult to control and measure energy, for experimental systems of interest, it is more 
convenient to control temperature (T) instead of energy. Note that temperature is an intensive variable, 
which is not a function of system size, while energy grows with system size. The ensemble of 
microscopic states consistent with the macroscopic constraints of N, V, and T is referred to as the 
canonical ensemble. There is no reason to believe that the microstates in the canonical ensemble are 
equally likely as in the microcanonical ensemble, and indeed their probabilities are different as shown 
by the simple calculation described below. 

A convenient way to keep a system at constant temperature is to surround it with a conducting wall and 
immerse it in a large bath. The system exchanges energy with the bath, and so its energy fluctuates, but 
this keeps the temperature of the system constant and equal to that of the bath. This situation is 
depicted in Fig. A1. As the large bath is insulated from its surroundings, together the bath and the 
system are characterized by constant values of N, V, and E. Denoting the bath by B, the system with Ξ, 
and the system and bath together as Ξ′, the following relationship holds: 

𝐸õ� = 	𝐸õ +	𝐸?             (A2) 

where Ei is the energy of the ith component, and 𝐸õ� is a constant. Now, suppose the system is in a 
particular microstate, En, then the energy of the bath is given by 𝐸õ� − 	𝐸ö. When the system is in a 
particular microstate, n, the total number of microstates for the bath and system equals 1 * Ω?	(𝐸õ� −
	𝐸ö), where Ω?	(𝐸õ� − 	𝐸ö) is the number of microstates available to the bath when the system is in the 
microstate, n. Since the system and bath together is characterized by constant N, V, and E (equal to 𝐸õ�), 
the microstates of the system and bath taken together are equally likely. Therefore, the probability of 
the system being in a particular microstate, n, is given by dividing the number of microstates available to 
the system in this situation divided by the total number of possible microstates of Ξ′; i.e.,  
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𝑃÷tø� =	
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The denominator on the right-hand side of Eq. A3 is a constant, and so 𝑃÷tø� ~ Ω?	(𝐸õ� −	𝐸ö). To keep 
the temperature of the system constant, it must be much smaller than the bath (or the bath and system 
taken together). So, we can carry out a Taylor expansion in powers of 𝐸ö, and rewrite 𝑃÷tø�as follows: 

𝑃÷tø�	~ exp[ln Ω?	(𝐸õ� − 	𝐸ö)] = exp		ûlnΩ?	(𝐸õ�) − 𝐸ö 	�
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Where in the last equality in A4, we have used Boltzmann’s definition of entropy in the microcanonical 

ensemble. Now standard classical thermodynamics tells is that �
}C¬
}ê¬
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, where 𝑇?  is the temperature 

of the bath, which is equal to the temperature of the system, T. Therefore, we conclude that  

𝑃÷tø� =	

m	 çú�¬ÿ

∑ 
m	 çú�¬ÿ!

=	 
m	 çú�¬ÿ

�
  (A5) 

where Z is the partition function that normalizes the probability distribution. 

What is the entropy in the canonical ensemble? Classical thermodynamics tells us that a system at 
equilibrium with N,V and E fixed, corresponds to the minimum energy state. For a system with fixed, N,V 
and T (canonical ensemble), it is the Helmholtz energy (A) that is minimal at equilibrium. The Helmholtz 
free energy is given by 𝐴 = 𝐸 − 𝑇𝑆. Note that the energy of a system in the canonical ensemble is the 
value of the energy averaged over microstates,∑ 𝑃÷tø�	𝐸öö . Using the definitions of E and A, and Eq. A5, 
it is easy to show that 

𝐸 = 	} �ü �
}½

    (A6) 

where b is A
<¬	�

, an inverse temperature. Simple algebra using Eq. A6 and the definition of A yields that 

𝐴 =	−𝑘?𝑇 ln 𝑍. Now substituting formulas obtained above for A and E into the relationship, 𝑆 = 	 êH#
�

, 

obtains 

𝑆 =	−	𝑘? 	∑ 𝑃ö ln 𝑃öö = 	−	∑ 𝑃ö ln𝑃öö 	 in “entropy units”  (A7) 

Notice that we obtained expressions for the pertinent quantities in the canonical ensemble by 
considering a system that overall (bath plus system) looked like a system in the microcanonical 
ensemble. 

Information and entropy 

The connection between the concepts of information and entropy was first described by Shannon [], and 
many fine expositions, such as that by Jaynes [], are available. A clear description in the context of 
biophysics can be found in the book by Bialek, and the much shorter description below is inspired by it. 
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Consider a situation where the answer to a question could be one of several possibilities. When we learn 
the answer, we gain information as there is no longer any uncertainty. The larger the number of possible 
answers the greater our uncertainty, and thus more information is gained by knowing the answer. 
Notice that entropy in statistical mechanics reflects the uncertainty in our knowledge of the microstate 
that a system occupies, given the macroscopic constraints. For example, if there is only one possible 
microstate available, there is no uncertainty, and the entropy is zero (Eq. A7). So, intuition suggests that 
there may be a connection between information gained upon knowing the answer to a question with 
several possible answers and the concept of entropy in statistical mechanics. Shannon made this 
connection precise. 

As noted above, the information gained should increase monotonically with the number of possible 
answers, N, to a question. Consider the following question: what is your name, and where do you live? 
This question has two independent parts. The information gained by answering a question which has 
independent parts must be the sum of the information gained by knowing the answer to each 
independent part. If we associate a probability, pi, with each possible answer, i, Shannon showed that 
the only function of the set, {pi}, that is consistent with the two constraints on information gained noted 
above is the entropy. The proof is sketched below. 

 First, let us consider a situation analogous to the microcanonical ensemble in statistical mechanics – 
viz., one where there are N equally likely possible answers to a question. Furthermore, consider the 
general situation where m independent questions need to be answered, each with k possible answers. 
Therefore, N = km. Since the information gained by answering each independent part must add, and it 
must be a function of N, the information gained, I (N), must obey the following relationship:  

𝐼	(𝑁) = 𝑚	𝑓	(𝑘)  (A8) 

Now consider a situation where n independent questions need to be answered, each with l possible 
answers, with the values of l and n such that the following condition holds: 

𝑘ñ 	≤ 	 𝑙G 	≤ 	 𝑘ñ�A  (A9) 

Since the information gained must be a monotonically increasing function of the total number of 
possible answers,  

𝐼	(𝑘ñ) 	≤ 𝐼	(𝑙G) 	≤ 𝐼	(𝑘ñ�A)  (A10) 

The fact that the answer is obtained in terms of independent questions further implies that 

𝑚	𝑓	(𝑘) ≤ 𝑛	𝑓	(𝑙) 	≤ (𝑚 + 1)	𝑓	(𝑘) (A11a) 

ñ
G
	≤ 	 ®	(�)

®	(<)
	≤ 	 ñ

G
+	 A

G
   (A11b) 

Note that if the function, f, was the logarithm, Eq. A11 would be obeyed because Eqs A8 and A9 would 
imply that 𝑚 log 𝑘	 ≤ 𝑛 log 𝑙	 ≤ (𝑚 + 1) log 𝑘. This suggests that, if there are N equally likely answers to 
a question, the information gained by knowing the answer is ~ log N. A mathematically more rigorous 
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proof of this result can be obtained. Notice that the entropy of a system in the microcanonical ensemble 
is also the logarithm of the number of possible microstates. 

Now consider the more general situation, where there are still N possible answers, but they are not 
equally likely. The probability of obtaining the ith answer is pi. To determine the properties of a system, 
including its entropy, characterized by the canonical ensemble of microstates, we considered the system 
to be immersed in a large bath and together the system and bath comprised a microcanonical ensemble 
of states. We could then use the known properties of the microcanonical ensemble to help us determine 
the properties of the canonical ensemble. In a similar spirit, we can express pi such that each possible 
answer has a few equally likely possibilities; i.e.,  

𝑝/ = 	
<T

∑ <&&
  (A12) 

where there are a group of ki equally likely answers from which the ith answer is drawn, and the total 
number of possible answers is N = ∑ 𝑘ññ .   

The quantity we seek is the information gained, I (pi), when the answer is the one with probability pi. In 
the way that we have formulated the problem, the total information gained by knowing which of the N 
answers is realized I (N) must be equal to the sum of I (pi) and the information gained by knowing which 
of the ki equally likely answers in group i was obtained. Furthermore, since each of the latter groupings 
has a probability, pi, associated with it: 

𝐼	(𝑝/) +	∑ 𝑝/ log 𝑘/ = 𝐼	(𝑁)/ = log ∑ 𝑘ññ     (A13) 

Therefore,  

𝐼	(𝑝/) = 	∑ 𝑝/G log ∑ 𝑘ññ −	∑ 𝑝/ log 𝑘/ = 	−	∑ 𝑝// log <T
∑ <&&

=	−∑ 𝑝// log 𝑝/ = 𝑆	({𝑝/})/  (A14) 

 where {pi} is the set of probabilities for the possible answers. The expression for the information gained 
by knowing that the answer with probability, pi, is realized is exactly the same as the entropy in the 
canonical ensemble where different microstates occur with different probabilities.  

In the main text, we seek the least biased model for the probability distribution characterizing HIV 
protein strains in circulation. The least biased model is one where the answer is most uncertain, and so 
the information gained by determining the probability distribution must be maximal. Eq. A14 says that 
this is tantamount to seeking the probability distribution characterized by the maximal entropy. 
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